Глюкоза как пища для мозга. Сладкое полезно: наш мозг не может функционировать без глюкозы

  • Дата: 19.11.2020

“Мозгу нужна глюкза, сахар и шоколад полезны для мозга” – мы не подвергаем сомнению общие места, а зря, потому что за ними часто скрываются заблуждения. Современная наука, испытывая общие места на прочность, разоблачает их. В частности, теперь мы знаем, что на самом деле нужно мозгу и как на него влияет сахар.

Мозг требует больше энергии, чем любой другой отдельно взятый орган в нашем теле. Вы скользите взглядом по этой строке, а в вашем мозге в этот момент вспыхивают электрическими импульсами 86 миллиардов клеток . За сутки не слишком напряженной работы мозг съедает 250-300 килокалорий, то есть около четверти энергии, которая уходит на основной обмен. Составляя всего два процента массы тела, мозг потребляет 25 процентов энергии. Вопрос, откуда лучше брать эту энергию?

Идея, что мозгу жизненно необходим сахар, довольно умозрительна и проистекает из того факта, что глюкоза – самый простой и доступный источник углеводов для нас. Может быть, все дело в истории науки: так сложилось, что энергетическая роль углеводов была изучена раньше и лучше, чем других соединений. Так или иначе, сегодня о том, как на самом деле влияет сахар на мозг, написано не только огромное количество научных работ, но и бестселлеров.

Спорная книжка с бесспорными фактами

“Если бы вы могли внести всего три простых изменения в свою жизнь, чтобы предотвратить или даже обратить вспять потерю памяти или другие заболевания, вы бы это сделали?”, – с этого провокационного вопроса доктор Перлмуттер начинал полуторачасовую презентацию своей книги, которая вошла в список бестселлеров New York Times 2013 года.

Профессор университета Майами Дэвид Перлмуттер – единственный в Америке врач, обладающий одновременно лицензией невролога и членством в Американской Коллегии Питания. В прошлом году Перлмюттер написал научпоп, ставший мировым бестселлером. Книжка называется “Зерновой мозг: неожиданная правда про пшеницу, углеводы и сахар, медленно убивающие ваш мозг”.

Название исчерпывающе передает основную провокационную мысль: углеводы разрушают наш мозг. Причем не только сахар и мука, но даже цельнозерновые крупы, которые диетологи называют полезными и прописывают для похудения. Все, что содержит сахар или крахмал, вызывает старческое слабоумие (болезнь Альцгеймера), синдром дефицита внимания, тревожность, хронические головные боли, депрессию, сниженное либидо и импотенцию, эпилепсию и вообще почти все неврологические болезни.

Доктор Перлмуттер объясняет, как мозгу вредят сахара, которые он получает из хлеба или фруктов, как мозгу идут на пользу холестерин и жиры, а также, как можно стимулировать рост новых клеток мозга в любом возрасте. Он рассуждает, что и как нужно есть, чтобы стимулировать “гены ума” и избегать страшных болезней без всяких таблеток.

Чтобы доказать свою экстремальную позицию, Перлмуттер приводит десятки и десятки клинических исследований, на его сайте можно найти полные тексты всех работ, на которые автор ссылается. Некоторые исследования более убедительны, другие менее. Вот несколько тезисов из книги:

1. Большинство зерновых, в том числе твердые сорта пшеницы или грубая ржаная мука, на самом деле вредны. У всех зерновых слишком высокий гликемический индекс, а значит, через полтора-два часа после еды уровень глюкозы в крови резко подпрыгивает и бьет по мозгу.

2. Считается, что белки, жиры и углеводы одинаково важны для здоровья. На самом деле, мы вполне можем обходиться без сахаров, потому что их наш организм прекрасно может синтезировать их из белков и других веществ, так что жизненной необходимости есть сахар или крахмал у человека нет. Это, кстати, не мнение автора, а вполне устоявшаяся точка зрения.

3. Классическое соотношение выглядит так: 60 процентов калорий организм извлекает из углеводов, 20 процентов – из белков и еще 20 процентов – жиров. Здоровое соотношение, по Перлмуттеру, это: 75 процентов жиров, 20 процентов белков и 5 – углеводов. Это значит, что в день нужно съедать не больше 50-80 граммов сахаров. То есть, например, одну порцию фруктового салата. Главные источники энергии в этом случае – это масло и орехи, авокадо и всевозможные овощи (не крахмалистые), рыба и мясо. Это здоровое соотношение хотя бы потому, что так питались наши предки сотни тысяч лет до тех пор, пока не научились делать муку и сахар. Теория экономных генов (thrifty gene hypothesis), предполагает, что организм человека запрограммирован запасать энергию в тучные времена в виде жира, чтобы затем тратить его в голодные времена. В современном обществе изобилия голодать не приходится, поэтому организм только запасает – отсюда проистекают многие болезни обмена. Во время голодания организм сначала производит глюкозу из гликогена, что содержится в печени и мышцах, а затем начинает питаться кетонами, которые получает при сжигании жира. Мысль Перлмюттера состоит в том, что кетоны – это более здоровая еда для мозга, чем глюкоза.

4. Старческая деменция, паркинсонизм, рассеянный склероз и другие нейродегенеративные болезни связаны с разрушением ткани мозга, в его основе лежит воспаление, а в основе воспаления – сахар и пшеничный белок глютен. То же самое касается сердечно-сосудистой системы, инфаркт начинается с воспаления. Перлмуттер ссылается на работы гарвардского профессора Алессио Фазано, педиатра-гастроэнтеролога, который приходит к выводу, что каждый человек в большей или меньшей степени плохо реагирует на глютен. Глютен служит краеугольным камнем воспаления, которое и приводит к разрушению тканей, в том числе мозга. Именно воспаление приводит к “протечкам” в жизненно-важном барьере между кровеносными сосудами и мозгом.

5. Даже небольшой подъем уровня сахара в крови увеличивает вероятность болезни Альцгеймера. При этом болезнь Альцгеймера предотвратима и около половины случаев болезни вообще могло бы не быть, если бы не сахар. Осенью 2013 года правительство США выделило $33 миллиона на испытания лекарства , способного предотвратить болезнь Альцгеймера у генетически предрасположенных к нему людей. Перлмуттер настаивает на том, что начать бы следовало не с лекарств, а с изменений стиля жизни и привычек, ведь у нас есть железные научные доказательства, что качество еды влияет на риски.

“Диета, богатая жирами, снижает риск сердечно-сосудистых заболеваний и твердо связана со снижением риска деменции. Это показано в исследовании Mayo Clinic , опубликованом в The Journal of Alzheimer’r Disease в январе 2012 года. Риск деменции для человека на высокожировой диете составляет 44 процента, для человека на высокоуглеводной, которую нам рекомендует официальная диетологи, – 89 процентов”.

Особенно проблема усугубляется с годами: после 70 лет риск когнитивных или интеллектуальных нарушений увеличивается почти в четыре раза , если человек ест много углеводов – это было доказано в исследовании, которое включало более 1200 человек от 70 до 89 лет.

Позже в исследовании , опубликованном в New England Journal of Medicine, было показано, что даже у людей со слегка повышенным уровнем сахара в крови, которых нельзя назвать диабетиками, риск развития деменции заметно выше, чем у людей с нормальным уровнем сахара.

“Идея о пользе обезжиренных продуктов, которая была вбита нам в головы и желудки, абсолютно беспочвенна и виновата в большинстве современных болезней” – эта мысль проходит красной нитью через всю книгу “Зерновой мозг”. И вторая: “Слишком мало людей, которые понимают, что есть жир и быть жирным – это далеко не одно и то же”.

У Перлмуттера нашлось немало оппонентов среди известных авторитетных врачей. Кто-то обвиняет его в передергиваниях, кто-то считает, что из правильных фактов, изложенных в книге, читатель, да и сам автор делают неправильные выводы. Например, особо впечатлительный человек по прочтении может полностью перейти на жирную животную пищу, вместе с углеводами вычеркнув из своего меню любые овощи, фрукты и ягоды. Некоторые осторожно замечают, что, возможно, Перлмуттер преувеличивает вред глютена. Однако все оппоненты соглашается с основной мыслью: мы слишком много едим углеводов, и это вредит нашему мозгу.

Делает ли кето-диета нас тупее?

В международных базах данных хранятся миллионы научных исследований. При желании в них можно найти доказательства диаметрально противоположных мыслей. Например, есть данные, что если лишить мозг глюкозы, то в краткосрочной перспективе это приведет к ухудшению памяти и замедлению реакций. “Мозгу нужна глюкоза, и низкоуглеводные диеты могут быть вредны для обучения, памяти и мышления,” – говорит автор одного такого исследования, профессор психологии из Университета Тафтса Холли Тейлор.

Однако авторы не посмотрели толком, что происходит в долгосрочной перспективе. Конечно, если в одночасье лишить мозг всей глюкозы, которой он привык пользоваться за всю жизнь, для него это будет немалый стресс. Однако, со временем организм перестраивается на кетогенный путь обмена, при котором место глюкозы занимают кетогенные тела – продукты распада жирных кислот. Мозг привыкает к новому топливу, и качество его жизни даже повышается.

Например, в 2012 году была опубликована работа Роберта Крикориана и его коллег из Университета Цинциннати, в которой они сравнивали эффект от низкоуглеводной и высокоуглеводной диеты на 23 пожилых людях с умеренными интеллектуальными нарушениями. Через шесть недель у участников низкоуглеводной группы не только снизился уровень сахара и инсулина в крови, уменьшился вес и объем талии, но также улучшилась память. Причем, ее улучшение коррелировало со снижением уровня инсулина и повышением уровня кетоновых тел.

Впрочем, шесть недель, которые длился эксперимент профессора Крикориана, сложно назвать долгосрочным исследованием. Есть и более внушительные данные, которые если не обнаруживают пользы низкоуглеводной диеты, то уверенно доказывают ее безопасность. Эта работа австралийских ученых под руководством доктора Гранта Бринкуорта была опубликована в 2009 году в журнале Archives of Internal Medicine. В течение года авторы наблюдали за двумя группами людей, страдавших ожирением. Участники и той, и другой группы потребляли одинаковое количество калорий (около 1500 в сутки), но одни ели много жиров и мало углеводов, другие, наоборот, много углеводов и мало жиров. Через год и те, и другие похудели примерно одинаково – в среднем, на 14 килограммов. В течение и в конце года авторы оценивали с помощью стандартных тестов психологическое состояние и мыслительные способности. К концу года стало ясно, что низкоуглеводная высокожировая диета лучше укрепляет память, настроение и эмоциональное состояние.

Возможные объяснения

Еще в начале 1920 годов кетогенную диету использовали для лечения эпилептических припадков у детей. Врачи выяснили опытным путем, что частота и сила приступов зависит от количества сахара и крахмала в еде. Позже препараты оттеснили диетическое лечение на второй план, но в середине 1990х началась вторая волна интереса к этому подходу, после того как кето-диета помогла избавить от приступов ребенка голливудского продюсера Джима Абрахамса. Это произвело на Абрахамса настолько большое впечатление, что он снял основанный на этой истории фильм First Do No Harm с Мерил Стрип в главной роли.

Почему кетогенный обмен позволяет вылечить эпилепсию, а сахар провоцирует заболевания вроде болезни Альцгеймера? В своей колонке в журнале Psychology Today психиатр Эмили Динс излагает возможное объяснение, почему низкоуглеводная диета может оказывать благотворное влияние на мозг: “Когда мы переходим на кетоны в качестве основного топлива для мозга, мы также изменяем обмен аминокислот: снижается уровень глутамата – аминокислоты, которая в больших количествах может повреждать клетки. Снижая уровень глутамата, мы снижаем риск инсульта и создаем условия для восстановления нервных клеток.”

Сам по себе глутамат – это главная сигнальная молекула, передающая возбуждение в нашем мозге. Однако из глутамата в мозге синтезируется многое, в том числе и ГАМК – главный тормозной медиатор, то есть молекула, которая, напротив, угнетает возбуждение. Слишком много возбуждения приводит к нейротоксичности, которая связана с эпилептическими приступами, а также с другими болезнями мозга, в том числе депрессией, биполярным расстройством, мигренями и деменцией. На кетогенной диете глутамат скорее превращается в ГАМК, и это, вероятно, объясняет благотворный терапевтический эффект диеты.

Но не только: само по себе снижение уровня глюкозы повышает порог возбудимости клеток мозга и, соответственно, порог начала приступов. И наоборот, чем больше глюкозы, тем больше возбудимость и склонность к приступам. Это может объясняться особенностями энергетического обмена, то есть событий, которые происходят в митохондриях нервных клеток. Митохондрии – это клеточные теплоэлектростанции, в которых сжигаются и глюкоза. и кетоновые тела. Еще лет 20 назад в биохимии было принято считать, что глюкоза – это предпочтительное, более “чистое” и эффективное топливо. Относительно недавно выяснилось, что все ровно наоборот: кетоновые тела более энергоэффективны, а сжигание глюкозы сильнее “коптит”, то есть приводит к образованию большого количества свободных радикалов, повреждающих и митохондрии, и клетки в целом. А мы ведь помним, что мозг – самый энергоемкий орган в нашем теле, ему требуется очень много сил, чтобы постоянно переключаться с возбуждения на торможение и обратно, перекачивать через мембраны клеток глутамат, ГАМК и сотни других молекул. Конечно, если из крови в мозг постоянно поступает много глюкозы, то он будет использовать ее, как самый доступный ресурс. Однако, если прикрутить этот сладкий поток и подать в мозг больше кетоновых тел, то, как только клетки переключатся на новый способ обмена, их работа окажется более энергоэффективной и “экологичной”.

Учитывая все это, известная со школы сентенция “мозгу нужна глюкоза” выглядит совсем не убедительно. Скорее наоборот.

Глюкоза – основный источник энергии для мозга, как гласит текущий консенсус. 120 грамм глюкозы в день нам необходимы для поддержания оптимальной функции мозга . Альтернативная концепция состоит в том, . У обеих точек зрения есть весомые аргументы и исследования, говорящие об их правоте.

Хочется порассуждать на тему глюкозы и взвесить обе концепции.
В процессе предлагаю пройтись по:

  • Метаболизму глюкозы;
  • Метаболизму лактата и в меньшей степени кетонов;
  • Функции транспортных белков, импортирующих глюкозу (GLUT);
  • Происходящему в дыхательной цепи митохондрий;
  • Попытаюсь сделать промежуточные выводы для себя.

Будет много базовых биохимических аспектов, выводы будут традиционно в конце.

Глюкоза. Метаболизм и проблема NAD +

Гликолиз в чистом виде (опуская все 10 шагов) выглядит так:

Glucose + 2NAD+ + 2ADP + 2Pi > 2Pyruvare + 2NADH + 2ATP

При попадании в клетку глюкоза довольно быстро фосфорилируется до глюкозы-6-фостафа. В очень редких случаях в клетках есть избыток нефосфорилированной глюкозы.

  • Пируват;
  • Гликоген;
  • Пентозофосфатный путь, он же PPP (NADPH, пуриновый метаболизм итд)

К гликогену и PPP применительно к мозгу я вернусь позже. Поговорим о пирувате.

Пируват мы можем использовать для синтеза аминокислот, промежуточных субстратов цикла Кребса, при необходимости для восстановления глюкозы итд – полноценный строительно-углеродный блок. Давайте вспомним окисление до ацетил-КоА, который является очень важным внутриклеточным энергетическим посредником:

Pyruvate + NAD+ + CoA-SH (кофермент А) + H+ > Acetyl-CoA + NADH + CO2

Трёхуглеродный пируват окисляется до двухуглеродного ацетил-КоА.

Судьба Ацетил-КоА куда менее разнообразна: молекула может поучаствовать в синтезе жиров/кетонов, а может отправиться в цикл Кребса (лимонной кислоты). Классическая картинка цикла Кребса ниже:

Acteyl-CoA + 3NAD+ + FAD+ + GDP + Pi + 3H2O > 2 CO2 + 3NADH + FADH2 + 3H+ + GTP + CoA

Ацетил-КоА в результате «прокрутки» цикла Кребса превращается в 2 молекулы углекислого газа, в процессе выделяя энергетическую валюту в виде GTP и доноры электронов х3 NADH и 1 FADH2.

В итоге из 1 молекулы глюкозы мы получаем 10 NADH и 2 FADH2. Молекул, которые являются донорами электронов в дыхательной цепи митохондрий.

Одновременно с этим вы можете вспомнить, что для гликолиза нужен NAD+ .

Если у нас много NADH, и мы по каким-то причинам не успеваем его использовать для восстановления комплекса 1 (запуская окислительного фосфорилирования) или других реакций, то сталкиваемся с дефицитом NAD+.

Дефицит NAD+ — это псевдогипоксия, если коротко. Вспоминая , Глюкоза восстанавливает 111 молекул NAD+ на 1000 созданных АТФ, кетоны восстанавливают лишь 41 NAD+ на 1000 созданных АТФ.

Количество глюкозы больше возможности ее «сжечь» = получаем псевдогипоксию . Кислород не может терминально «принять» электрон, потому что еще до запуска окислительного фосфорилирования (OxPhos), этот электрон надо «посадить» на NAD+ и уже полученный NADH передать в OxPhos.

Чтобы не было путаницы. Гипоксия – увеличенное соотношение NADH/NAD+ и остановка оксилительного фосфорилирования в виду отсутствия кислорода (остановки комплекса IV). Псевдогипоксия – нарушение аэробного метаболизма из-за того, что метаболизм глюкозы создает NADH и потребляет NAD+. В одном случае повышенное соотношение NADH/NAD+ следствие в другом – причина. Итог один – нарушение окислительного фосфорилирования и синтеза АТФ.

NAD+ — «тонкое» место всего метаболизма через глюкозу.

Лактат и восстановление NAD +

Для восстановления NAD+, столь необходимого метаболизму глюкозы, организм обратимо восстанавливает пируват до лактата.

В процессе образования лактата NADH окисляется до NAD+.

Из-за необходимости в NAD+ метаболизм глюкозы невозможен без восстановления пирувата до лактата c параллельным окислением NADH до NAD+ . Наш организм прекрасен и старается оптимизировать процессы. В качестве примера приведу цикл Кори:

Мышцы во время интенсивных нагрузок сталкиваются с описанной выше проблемой восстановления NAD+, и усиленно восстанавливают NAD+ с помощью лактата.

И есть печень. Основной источник энергии которой – α-кето-кислоты. Также реакцию фосфорилирования глюкозы (первый этап гликолиза) в печени катализирует глюкокиназа, менее аффинитивный глюкозе изомер гексокиназы. Забегая вперед отмечу, что мембранный пассивный транспорт глюкозы (GLUT2) гепатоцитов забирает глюкозу только при большой ее концентрации и помощи инсулина.

Лактат из сердечно-сосудистой системы утилизирует печень, при помощи глюконеогенеза восстанавливая ее до глюкозы и возвращая глюкозу в кровь. Эта утилизация лактата и называется циклом Кори .

Проблема лактата в концентрации водорода. Концентрация водорода, как помните, определяет pH. Чем больше водорода – тем ниже и кислотнее pH, чем меньше водорода – тем выше и щелочней pH . В принципе кислотность – это способность быть донором/акцептором водорода, то есть кислотой/основанием.

Проблема в свою очередь pH – это влияние на конформацию и функцию белков.

«Неубранный» клеточный мисфолдинг – это большая проблема в большинстве нейрологических и метаболических заболеваний.

Цикл Кори снижает проблем лактата и лактоацидоза, но не полностью.

Гликизирование белков

Опять немного забегая вперед, мембранный транспорт глюкозы во всех клетках пассивный. Это значит, что глюкоза может попадать в клетки только когда концентрация глюкозы снаружи больше, чем внутри.

Гликизирование – это ковалентное соединение молекул сахаров с белками и жирами. Важным является то, что это соединение не катализируют ферменты. Присоединение сахаров к белкам зависит от концентрации сахаров и белка. Некоторые белки могут оптимально функционировать только после гликизирования в аппарате Гольджи клеток.

Но в тоже время «свободное» гликизирование (не в аппарате Гольджи, где это строго контролируется и проводится в четкой последовательности) ряда белков приведет к нарушению их функции .

Не зря гликизированный гемоглобин HbA1c один из установившихся признаков диабета, показывающий количество гемоглобина, прореагировавшего с глюкозой за последние примерно 4 месяца (срок жизни эритроцитов).

Вывод можно сделать простой: избыток глюкозы приводит к нарушению функции белков за счет повышенного гликизирования оных .

NADH и дыхательная цепь переноса электронов

Как помните, цепочка окислительно-восстановительных реакций в дыхательной цепи может начаться в комплексе I (NADH) или в комплексе II (FADH2). Тему я ранее освещал в серию из 3 постов: , .

NADH . Примерно 2,5 АТФ; Комплекс I (выкачка протонов). Суперкомплексы из I-III-IV.

FADH2 . Примерно 1,5 АТФ; Комплекс II (нет выкачки протонов). Комплекс II не образует суперкомплексов.

  • Глюкоза: NADH/FADH2 – 5:1
  • Жирные кислоты: NADH/FADH2 – 2:1 (на примере пальмитата);
  • Β-гидроксибутират (BOHB): 8:3 (2,66: 1)
  • Ацетоацетат: 7:3 (2:33: 1)

В соотношениях NADH/FADH2 для кетонов и жиров есть пара «если» в цикле Кребса, но в целом картина ясна.

С жирами/кетонами есть 2 противоречащих тенденции:

  • Они содержат больше свободной энергии (G), чем углеводы;
  • Они расходуются более «медленно» при помощи менее энергоёмкого переносчика электрона и через комплекс, который не выкачивает протоны (меньше вклад в создание АТФ).

Хотя не такое оно и противоречивое. Жиры – топливо, которое мы запасаем в «сытое» время, чтобы в «голодное» могли им пользоваться. Поэтому логично, что жиры содержат больше свободной энергии (G) и при этом «сгорают» в дыхательной цепи с меньшим «сиянием».

Для переноса электронов с I и II комплекса нужен CoQ (коэнзим Q) в окисленной форме. Его нужно восстановить и отправить с электроном на комплекс III.

Чтобы не углубляться в дебри, которые мы разбирали в трех статьях:

  • Стимуляция in vitro комплекса I создает Х количество реактивных видов кислорода;
  • Стимуляция in vitro комплекса II создает 6Х реактивных видов кислорода;
    1. CoQ находится в восстановленном состоянии;
    2. Что создает обратный поток электронов (Reverse Electron transport) и поток супероксидов в комплекс I;
    3. С последующей обратимой деградацией цистеиновых белков комплекса I;
    4. То есть жиры не только горят «менее ярко» и «дольше», но и не подавляют метаболизм через более быстрый и энергоёмкий комплекс I / NADH;
  • Стимуляция in vitro комплексов I и II создаёт 20Х реактивных видов кислорода.

Я не хочу очень много останавливаться на реактивных видах кислорода (ROS), но с ними по доброй традиции разницу яда и лекарства определяет доза, примеры:

  • Кето после гипергликемии снизит количество ROS;
  • Повышение ROS на кето сигнализирует POMC нейронам гипоталамуса о чувстве сытости;
  • Небольшое повышение ROS на кето после умеренной углеводной диеты имеет горметический эффект и запускает ряд восстановительных адаптаций в организме
  • Многое другое.

Вывод : гипергликемия опасна огромным количество реактивных видов кислорода и вредом митохондриям.

Коротко и простыми словами: обжорство без меры вредно и может поуничтожать вам митохондрии; сладким проще этого добиться, чем жирным, сладким+жирным еще проще (особенно хорошо для этих целей сладкое дополняют ненасыщенные жиры).

Мембранный транспорт глюкозы

Глюкоза в клетки попадает в основном пассивно через специальные транспортеры (GLUT). Пассивный транспорт означает, что глюкоза может попадать из большей концентрации в меньшую.

Разновидность GLUT определяется как правило функцией клетки. Давайте вспомните хотя бы несколько разновидностей GLUT (ниже картина сознательно неполная для нагладяности).

Свойство GLUT1 GLUT2 GLUT3 GLUT4
Орган Эритроциты Печень Нейроны Миоциты, адипоциты
Потребность в глюкозе Постоянная, низкая Вариабельная, низкая Постоянная,
высокая?
Вариабельная,
высокая
Аффинитивность глюкозе Средняя Низкая Высокая Зависит от инсулина
Дополнительные комментарии У эритроцитов нет митохондрий. Они полагаются только на гликолиз для синтеза АТФ Печень потребляет в основном α-кето-кислоты.

Глюкоза туда попадает лишь при высокой концентрации и не без помощи инсулина.

Для попадания в нейроны глюкоза проходит через GLUT1 в ГЭБ и GLUT3 в самих нейронах. GLUT4 “утоплены” в клетке. В присутствии инсулина GLUT4 сдвигаются вверх мембаны и начинают «пропускать» глюкозу в клетки.

В итоге мы получаем, что нейроны обладают транспорными белками глюкозы, очень к ней чувствительными.

Эритроциты живут примерно 120 дней, для попадания в миоциты и адипоциты глюкозе нужен инсулин, в печень глюкоза попадает только при высокой концентрации (и у печени есть еще ряд особенностей метаболизма глюкозы (вроде глюкокиназы вместо гексокиназы). У нейронов подобно защиты от глюкозы нет.

Только из анализа GLUT можно сделать два вывода:

  • Что глюкоза для мозга очень важна, поэтому мозг так «чуток» к ней;
  • Что нейроны крайне подвержены вреду гипергликемии, хотя должны жить вечно.

Для подкрепления 2-го тезиса напомню, что гексокиназа очень быстро фосфорилирует глюкозу при попадании последней клетку. Поэтому как правило снаружи глюкозы всегда больше, чем внутри клетки, что необходимо для пассивного транспорта глюкозы в цитозоль.

GLUT1 в гемато-энцефалическом барьере могут пропускать 100 грамм глюкозы в минуту. GLUT3 в нейронах более аффинитивны глюкозе, и их транспортная «вместимость» еще больше.

Неоспоримая важность глюкозы для мозга приводит нас к следующей подтеме.

Нейроны и глюкоза

Нейроны должны «жить» вечно и исправно передавать электрические сигналы. Нейрогенез на месте «погибшего» нейрона не заменяет «старичка» и его участие в гомологических связях. Смерть нейронов – плохо.

Теперь возьмём предыдущие доводы о вреде гипергликемии (лактоацидоз, псевдогипоксия, вредный избыток ROS) + помножим это на высокоаффинитивный глюкозе GLUT3 и отсутствие значимой фильтации количества поступающей глюкозы на уровне ГЭБ и элементов гликолиза, то возникает вопрос: как нейроны могут защититься от потенциально смертельной гипергликемии?

Ответ: никак.

И есть еще одна особенность нейронов, продиктованная их функцией: они не запасают гликоген. Отчасти это свойство постоянно «работающих» клеток. Допустим, запас гликогена постоянно сокращающихся кардиомиоцитов значительно ниже других миоцитов. И постоянно работающее сердце 80% энергетических потребностей закрывает бета-оксидацией жиров. Другая функциональная особенность – постоянная потребность в энергии и строительных белках. Активность мышц вариабельна, поэтому они запасают гликоген на случай повышения активности.

Давайте вспомним на что может быть расходована глюкоза и переложим это на нейроны:

  • гликоген (нейроны не запасают);
  • пируват (цикл Кребса, синтез углеродных «строительных блоков);
  • пентозо-фостафный путь (синтез нуклеиновых кислот и восстановителя NADPH);

В данном случае мы знаем, что у нейронов подавлена фосфоглюкокиназа, один из ферментов, необходимых для гликолиза . Этот фермент катализирует необратимую (с гидролизом АТФ) реакцию фосфорилирования фруктозы-6-фосфата до фруктозы-1,6-бифосфата. Образование фруктозы-1,6-бифосфата – это committed step на метаболической развилке между пируватом и пентозо-фосфатным путём.

Получаем, что нейроны функционально блокируют образование пирувата из глюкозы, а вместо этого пускают глюкозу через пентозо-фосфатный путь на пуриновый метаболизм и нахождение в восстановленном состоянии .

Это логично сочетается с функцией «вечной» жизни: нуклеиновые кислоты для ремонта и поддержки ДНК и синтеза белков; NADPH, чтобы находится в более восстановленном энергетическом состоянии.

Однако возникает вопрос: Откуда энергия, если глюкоза уходит в основном не на энергию, а на PPP?

Может сложиться верное впечатление, что с «сахарным» вопросом нейронам не справиться без посторонней помощи . И она имеется. У нейронов есть «клетки-няньки» астроциты, которые вполне возобновимы и могут хранить незначительные запасы гликогена.

Лактатный шатл астроцитов и глюкоза

Лактатный шаттл астроцитов – гипотеза, медленно набирающая обороты в научном мире. Суть ее состоит в том, что глюкоза перерабатывается в астоцитах до лактата, астроциты впоследствии в формате cell- to- cell передают лактат нейронам . Это не отменяет того факта, что нейроны могут сами использовать глюкозу. Лактат, напомню, это восстановленный пируват. Он окисляется до пирувата с образованием NADH.

Возвращаясь к транспортным мембранным белкам заметим, что у астроцитов доминирует GLUT1, менее аффинитивный глюкозе, чем GLUT3. В целом это так. Однако, например, омега-3 ненасыщенные жиры усиливают экспрессию GLUT1 белков (потребление глюкозы астроцитами в данном случае) .

Еще один «удар» по GLUT3 наносит глутамат. Нейротрансмиттер, связанный с процессами возбуждения нервной системы. Возбуждение – повышение активности – повышенная энергопотребность. Но глутамат-опосредованное возбуждение снижает аффинитивность глюкозе GLUT3 (нейроны) и повышает аффинитивность глюкозе GLUT1 (астроциты) .

Вот некоторые доводы в пользу лактатной гипотезы:

  • Гипотеза позволяет решить текущие противоречия в метаболизме глюкозы нейронами (откуда энергия, если глюкоза на нуклеиновые кислоты и восстановленное состояние);
  • In vivo уже сумели продемонстрировать cell-to-cell лактатный шатл;
  • Изомер лактат дегидогеназы (LDH-5), который способствует восстановлению пирувата до лактата доминирует в астроцитах, а в нейронах доминирует изомер фермента (LDH-1), который связан в большей степени с утилизацией лактата;
  • В плане транспорта лактата у астроцитов активны клеточные белки MCT1/MCT4, с низкой аффинитивностью лактату, но которые могут его транспортировать наружу; у нейронов более выражен изомер MCT2, более аффинитивный лактату и связанный забором его в клетку;
  • Противоположные данные (что у астроцитов более аффинитивные лактату клеточные белки) были In vitro и в нефизиологических условиях (температура 20 и 25 градусов), что все вместе могло изменить форму и функцию белков.
  • Гипотеза выдерживает особенности работы GLUT1 и GLUT3 в виду внешних факторов и специфики связки астроциты/нейроны

Выводы:

  • Глюкоза потребляет глюкозу в основном для синтеза нуклеиновых кислоты и нахождения в восстановленном состоянии;
  • Гипотеза лактатного шатла астроцитов логично дополняет наши проблемы в понимании метаболизма глюкозы нейронами

Остающийся вопрос: как это всё противостоит гипергликемии?

Ответ прежний: никак; лактатный шатл лишь позволяет объяснить некоторые противоречия в метаболизме глюкозы.

Глюкоза же после анализа ее метаболизма нейронами приобретает еще большее значение. От нее зависит структурная целостность ДНК нейронов. И в меньшей степени энергопотребление.

По всем анализируемым выше признакам мозг адаптировался чувствовать минимальные значения глюкозы, а организм научился ее синтезировать в ходе глюконеогенеза.

vs Жир

Пора сравнить жиры (кетоны) и глюкозу как источник энергии для мозга. Гемато-энцефалический барьер не пропускает длинноцепочные жировые кислоты, поэтому организм использует кетоны, которые он синтезирует из ацетил-коА при недостатке глюкозы и избытке ацетил-коА. Чего мы добиваемся голоданием или кето-диетой.

Переменная Жир/кетоны
Реактивные виды кислорода Мало при умеренном потреблении;

Много (потенциальный вред митохондриям) при гипергликемии

Умеренно (вызывает адаптационные изменения)
Способность быстро генерировать АТФ Да,
NADH-ориентированный метаболизм через 1й комплекс (2,5 АТФ, выкачка протонов);Пиковая возможность генерировать энергию упираться в доступность NAD+. И скорость получения последнего при помощи восстановления пирувата до лактата.
Нет,

Есть предел «пиковой бета-оксидации»

Сбалансированный метаболизм NADH/FADH2 1:2, 1:3 (FADH2 дает 1,5 АТФ и не выкачивает протоны)

Транспорт в клетки Пассивные мембранные транспортеры (GLUT) со специфичной тканям чувствительностью глюкозе;

Ряд GLUT-комплексов требуют присутствия инсулина (например, GLUT4 в мышцах и адипоцитах)

VLDL;

Кетоны для мозга (VLDL не может пересекать ГЭБ)

Способы утилизации Пируват (белки, цикл Кребса итд);

Гликоген;

Пентозо-фосфатный путь (пуриновый метаболизм, NADPH итд)

Ацетил Ко-А (только на энергию в цикле Кребса)

Синтез жиров и гормонов

Последствия переедания Лактоацидоз;

Псевдогипоксия;

Гликизирование белков

Кетоны большом количестве также снижают pH крови (как при диабетическом кетоацидозе), но даже при продолжительном голодании таких показаний сложно добиться.

Вывод до банальности очевиден, глюкоза – более универсальная молекула. Это и топливо, и строительные блоки для белков и нуклеиновых кислот. Кетоны/жиры – резервное топливо для периода голодания (что мы и имитируем кето).

Выводы о глюкозе

  • У глюкозы есть 3 принципиальных пути утилизации:
    • Гликоген (для мозга неактуально);
    • Пируват (цикл Кребс, строительный блок для белков, жиров);
    • Пентозо-фостатный путь (синтез нуклеиновых кислот, нахождение в восстановленном состоянии)
  • Глюкоза дает больше АТФ в секунду времени, но переедание глюкозой связано с как минимум тремя потенциально опасными моментами:
    • Лактоацидозом (вследствии необходимости восстанавливать NAD+ при помощи лактата);
    • Гликизированием (и нарушением функции белков);
    • Патологическим количеством ROS при объедании;
  • Нейроны адаптировались чувствовать малые количества глюкозы и с гипергликемией им самим не справиться;
  • Нейроны не синтезируют гликоген и у них отчасти подавлен синтез пирувата, он используют глюкозу в основном для поддержания целостности ДНК и нахождения в восстановленном состоянии (PPP);
  • Лактатный шатл астроцитов снабжает нейроны лактатом (легко окисляемым до пирувата с выделением NADH); лактатный шатл не защищает нейроны от гипергликемии;
  • Жиры – более энергоёмкая форма топлива, но из Ацетил-коА невозможно получить строительные блоки для синтеза белков. В жирах больше потенциальной и получаемой энергии, но в минуту времени жиры могут сгенерировать меньше энергии, чем глюкоза.

Глава о важности глюкозы в нашей жизни из книги “Воля и самоконтроль”.

“Ты, бабушка, сначала напои, накорми дорожного человека, а потом уж и спрашивай”, - пенял в сказке Алексея Толстого Иван Бабе-яге, и был совершенно прав. Когда мы голодны, мозг функционирует в аварийном режиме: ему остро не хватает питания, и выполнять сложные задачи он не способен. Основным топливом для мозга, в отличие от других органов, служит исключительно глюкоза, которую организм добывает из съеденной нами пищи.

Глюкоза - топливо для мозга

И скромными аппетиты мозга не назовешь: хотя его масса составляет около 2% от массы тела, на работу этого органа уходит примерно 20% всех полученных организмом калорий. Хранилищ или запасных складов у мозга нет, поэтому ему необходим постоянный приток глюкозы: для бесперебойной работы наше серое вещество должно ежедневно поглощать около 120 г этого сахара , что эквивалентно 420 ккал (эти цифры особенно рекомендуются к ознакомлению вечно стройнеющим девушкам, стремящимся в азарте похудательной гонки сократить дневной рацион примерно до 0 ккал, а в идеале и вовсе до отрицательных значений).

Глюкоза - универсальный (хотя и не единственный) источник энергии для всего человеческого организма. В результате сложного биохимического процесса под названием “гликолиз” глюкоза расщепляется до более простых молекул, а полученная при этом энергия запасается в форме АТФ - особой клеточной “батарейки”, которая питает все метаболические процессы.

Мозг производит АТФ из глюкозы “по требованию”: если в данный момент энергия нужна, например, зрительной коре, то туда начинает активно поступать сахар, который превращается в энергию на месте. Основная часть (около 60-70%) полученных из глюкозы килокалорий нужна мозгу для того, чтобы проводить нервные импульсы. Кроме того, он постоянно тратит энергию на синтез нейромедиаторов - небольших, но крайне важных молекул, которые управляют всеми аспектами работы мозга и через его посредничество - остального организма, и их рецепторов.

Долгое время считалось, что концентрация глюкозы в разных отделах мозга примерно одинакова. Однако в последние годы были разработаны сверхточные методы, которые позволяют определять содержание этого сахара в отдельных регионах мозга. И оказалось, что наблюдаемая однородность была всего лишь следствием несовершенных измерений. Точно так же Марс веками казался астрономам ровным и гладким, но появились мощные телескопы - и наблюдатели с удивлением выяснили, что его поверхность сплошь покрыта кратерами, горными хребтами, рытвинами и каньонами.

Для решения некоторых задач глюкоза расходуется буквально в режиме реального времени

Более того, отдельные мозговые процессы буквально “высасывают” глюкозу, причем ее содержание падает не в целом по мозгу, а только в зонах, которые ответственны за решение конкретной задачи. Например, у крыс, которые пытались выучить, как расположены проходы в лабиринте, уровень сахара в гиппокампе - области мозга, которая участвует в обработке и хранении пространственной информации, падал на 30% . Чтобы восполнить запас глюкозы, нужно время - и, собственно, глюкоза.

Проверить, что происходит с сахаром в мозгу у людей, пока не получается: новые высокоточные методы, о которых говорилось в предыдущем абзаце, всем хороши, но требуют, чтобы подопытный был представлен в виде срезов тканей.

Зато увидеть, как голодающий мозг вытягивает глюкозу из крови, вполне можно. Например, если заставить добровольцев последовательно вычитать семерки из ста и параллельно брать у них образцы крови. Тест с семерками был придуман в 1942 году и с тех пор активно используется (вместе с некоторыми другими заданиями) докторами, которые подозревают у пациентов деменцию и другие нарушения работы мозга.

Психиатры и неврологи считают, что тест не сложен, но в нем легко ошибиться, если нарушена концентрация внимания. Измерения концентрации глюкозы в крови добровольцев до и после вычитания показывают, что на вроде бы простые арифметические усилия расходуется огромное количество сахара.

Если перед математическим испытанием напоить участников сладкой водой, уровень глюкозы в крови после теста все равно упадет, зато с заданием они справятся куда лучше .

Кажущаяся простота

Количество сахара в мозгу определяет, сможем ли мы противиться искушениям

Читатель наверняка догадался, что все эти разглагольствования про глюкозу неспроста: да, именно ее многие исследователи считают тем самым ресурсом, который истощается, когда мы пытаемся сдерживать свои порывы. Конечно, никто не приравнивает запас глюкозы в определенных зонах мозга к запасу силы воли - это было бы некорректным упрощением. Но сам факт, что во многом именно это вещество определяет, сможем ли мы устоять перед соблазнами, находит все больше подтверждений.

На первый взгляд кажется довольно странным увязывать столь сложный процесс, как самоконтроль, с такой банальной вещью, как сахар. Но если копнуть чуть глубже, это предположение не выглядит таким уж безумным. Глюкоза, без всяких преувеличений, одно из самых важных веществ в нашем организме, и нарушения его метаболизма приводят к тяжелейшим последствиям для всех органов, в том числе и мозга. Несколько упрощая, можно сравнить глюкозу с бензином: сколь бы сложной ни была машина, каким бы мощным ни был ее бортовой компьютер, если в баке нет топлива, никакие из этих наворотов не помогут.

Читатель может резонно возразить, что если бензин есть, то BMW последней модели по всем характеристикам обгонит старенькую “девятку”. Это, безусловно, верно, и мы подробно обсудим “встроенные” механизмы, определяющие силу воли, в следующих главах. Но так же верно и то, что если у BMW проблемы в системе подачи бензина к органам управления автомобилем, то ездить она будет не намного лучше “девятки”.*

В норме организм стремится поддерживать постоянную концентрацию глюкозы в крови - примерно на уровне 4,2– 4,6 ммоль/л. Хотя, как было написано выше, мозг потребляет глюкозу неравномерно, “в среднем по больнице” можно говорить о равновесии между концентрацией этого сахара в целом в крови и в мозгу. Если для выполнения какой-либо особо сложной задачи мозгу нужно больше глюкозы, он черпает ее из общего запаса глюкозы в крови - а значит, концентрация сахара там падает.

Это было подтверждено, например, в описанном выше эксперименте с последовательным вычитанием семерок. Соответственно, если изначально дать организму дополнительную глюкозу, например, влив в него чай с сахаром или другой сладкий напиток, мозг получит больше ресурсов для решения задачи: даже если одолеть ее получится не сразу, доступная глюкоза не закончится. И наоборот, если изначально содержание сахара в крови невелико, мозгу будет не хватать топлива для полноценной работы, и он будет хуже справляться со своими обязанностями.

Можно легко придумать эксперименты, которые подтвердят или опровергнут эти предположения. Например, напоить добровольцев сладкой водой, заставить проходить тест Струпа, а потом сравнить их результаты с результатами тех, кто пытался игнорировать значение цветных букв без глюкозной “подпитки”. Такие опыты проводились неоднократно , и испытуемые, у которых изначальный уровень глюкозы в крови был выше, действительно справлялись с заданием быстрее .

В старые добрые времена, когда этические комитеты не так свирепствовали, исследователи порой баловались совсем уж радикальными опытами. В 1997 году немецкие нейрофизиологи вкололи добровольцам изрядную дозу инсулина, чтобы наверняка спровоцировать у них состояние гипогликемии - значительного понижения уровня сахара в крови. Потом несчастных усадили перед экраном с двумя кнопками и дали указание нажимать на них только тогда, когда на мониторе будут появляться нужные буквы нужного цвета. Причем правую кнопку полагалось жать в ответ на одну букву, скажем, “М”, а левую - когда высвечивалась другая, например, “Т”. Это непросто сделать и в нормальном состоянии, но без сахара процент ошибок и время реакции стали совсем уж неприлично большими .

Вовремя съеденная шоколадка поможет сохранить фигуру

Лабораторные эксперименты, в которых содержание глюкозы в крови четко контролировалось (изучающие самоконтроль исследователи искололи не одну сотню пальцев), подтверждают, что каждое проявление силы воли снижает общую способность к самоконтролю - и уровень глюкозы.

Голодные добровольцы, которых сначала усаживали смотреть на беззвучно открывающую рот тетеньку и при этом не отвлекаться на появляющиеся рядом с ней короткие слова (попробуйте, когда в следующий раз выйдете на улицу, не читать вывески магазинов), а потом, не покормив, заставляли выполнять тест Струпа, справлялись с ним намного хуже сытых товарищей. Тетенька истощала имеющийся ресурс самоконтроля, у голодных испытуемых и без того небольшой, поэтому на второе задание, тоже требующее внимания, сил не оставалось. Для счастливчиков, которым между тетенькой и тестом Струпа перепадал маффин и сладкий апельсиновый сок, разноцветные буковки представляли куда меньшую проблему .

Если заставить сытого человека долго решать какую- нибудь задачу, требующую внимания, рано или поздно он тоже начнет ошибаться, а концентрация глюкозы как в мозгу, так и в крови упадет. Но у голодных этот эффект особенно выражен и наступает быстрее. После того как за обедом вы мужественно отказались от пирожного, за ужином остаться в рамках здорового питания будет куда сложнее. Поэтому худеющие злоупотребляют вредной едой именно во время последнего приема пищи, т. е. как раз тогда, когда лучше бы воздержаться от жирного и сладкого. В дополнение ко всему ближе к ночи организм в принципе хуже усваивает глюкозу, так что бороться с искушением становится почти невозможно .

По той же причине диеты со сверхжесткими ограничениями чаще всего приводят к обратному эффекту: истощив весь запас силы воли в течение дня, вечером человек срывается и сметает все, что есть в холодильнике .

Стремясь как можно быстрее сбросить вес, сторонники жестких диет радикально ограничивают количество калорий, и в итоге мозг худеющих постоянно голодает. А голодному мозгу намного сложнее удержаться от соблазнов, чем сытому.

Для того чтобы действительно похудеть, нужно ограничивать себя не слишком строго. Идея, что, урезав количество калорий до предела, можно максимально быстро добиться результата, хороша в теории. К несчастью, наша биохимия с этим не согласна.

Как понять, сколько глюкозы нужно?

Но экстренно съедать плитку шоколада перед важными переговорами или долгой кропотливой работой вроде написания годового отчета не нужно: повышение уровня глюкозы сверх необходимого мозгу уровня усидчивости не прибавит , а вот лишние килограммы - вполне.

Возникает вопрос: как понять, каков он, этот необходимый уровень? Теоретически каждый может определить его сам для себя, измеряя уровень глюкозы в крови до, после и вовремя эпизодов, требующих самоконтроля. Несколько десятков измерений - и вы будете примерно понимать, о каких цифрах идет речь. Останется совсем мелочь: определить, что и сколько нужно съедать, чтобы поддерживать нужное значение.

Ну и не забывать время от времени делать корректировки на возраст, изменение метаболизма (например, если вы поправились или похудели на 20 кг, все измерения придется проводить заново), гормональный статус и т. д.

Для тех, кто почему-либо не захочет проделать эти нехитрые манипуляции, есть более простой рецепт. Опыты психолога из Университета Миннесоты Кэтлин Вос показали, что люди с истощенным волевым ресурсом намного интенсивнее реагируют на все происходящее вокруг: их эмоциональное восприятие обостряется настолько, что даже боль от ледяной воды кажется гораздо более сильной, чем обычно (боль - это вообще очень субъективная вещь, которая во многом определяется нашим настроем и эмоциями). Утомленный мозг не в силах подавлять собственную реакцию на стимулы, и организм по полной программе реагирует даже на самые незначительные из них.

Если вы вдруг начали плакать, посмотрев грустный фильм, хотя обычно в кинотеатре засыпаете, или готовы расцеловать работника банка, потому что наконец подошла ваша очередь, - насторожитесь. Возможно, вы истощили запас глюкозы и надо срочно восполнить его, чтобы не наделать глупостей.

Как восполнить, вы уже догадались: нужно поесть. Но будьте осторожны: из-за нехватки глюкозы сил контролировать себя почти нет, и очень легко вместо пары печенек съесть пачку. Здесь в полной мере проявляется противный баг нашего мозга: чем сильнее мы стараемся преодолеть соблазн, тем больше истощается запас самоконтроля, а чем больше он истощается, тем сложнее противостоять искушению. Такой вот порочный круг. Чтобы разорвать его, надо… поддаться соблазну! Позволив себе небольшое отступление от правил, вы убережете себя от глобального срыва.

Глюкоза или как ее еще называют виноградный сахар - это составляющая единица углеводов. Она входит в состав многих продуктов, которые мы употребляем. Помимо этого, глюкоза является неотъемлемой частью состава крови. Именно поэтому она должна поступать в организм в достаточном количестве. Сегодня мы выясним, где содержится глюкоза, и узнаем суточную потребность этого вещества.

Общие сведения о глюкозе

Полезные свойства глюкоза

Данный продукт имеет следующие свойства, полезные для организма.

  1. Снабжает организм достаточным количеством энергии. Именно глюкоза повышает работоспособность и увеличивает мозговую деятельность. Следовательно, она необходима для людей, выполняющих тяжелую физическую работу, а также для тех, кому по роду деятельности приходится «работать мозгом».
  2. Положительно воздействует на нервную систему. Глюкоза снимает стресс и успокаивает. Именно поэтому многим людям, когда они волнуются, очень хочется съесть что-то сладкое.
  3. Улучшает состояние сердечно-сосудистой системы. Она способствует нормальной работе сердца, следовательно, снижает риск развития инфаркта.
  4. Выводит из организма вредные вещества, в том числе токсины, поэтому она полезна при разного рода отравлениях.
  5. Помогает справиться с простудными заболеваниями.

Суточная потребность человека в глюкозе

У каждого человека своя суточная потребность в глюкозе. Для того чтобы ее узнать, необходимо 2,6 грамма помножить на массу тела (например, 2,6 гр. умножаем на 64 килограмма (ваш предполагаемый вес), получается 166,4 грамма). Такова будет норма употребления данного вещества в день. Однако есть ситуации, когда данную цифру можно немного увеличить, но есть и такие случаи, когда ее нужно снизить.

Увеличить употребление глюкозы можно в том случае, если вам приходится много работать как физически, так и умственно. В данном случае вам следует слушать сигналы своего организма. Если вы стали быстро уставать и чувствуете, что у вас слишком быстро возникает чувство голода после приема пищи, то вам требуется употреблять больше глюкозы. Однако не следует слишком увлекаться этим, чтобы не возникло проблем со здоровьем и лишним весом.

Количество употребляемой глюкозы следует уменьшить, если у вас есть склонность к заболеванию сахарным диабетом (наследственная предрасположенность или повышенное содержание сахара в крови, которое еще не превысило допустимую норму, но уже находится на грани этого). Также норму данного продукта следует уменьшить, если вы ведете «сидячий образ жизни» и это не связано с вашей умственной деятельностью. В противном случае у вас возникнут проблемы с лишним весом. Если же вы будете употреблять меньше глюкозы, чем положено, то организму будет не хватать энергии. Тогда он будет ее брать их жиров, поступающих в организм, а не будет их откладывать в прослойки.

Чтобы правильно составить рацион, следует знать, где содержится глюкоза. Для этого ниже мы приведем для вас список продуктов, в которых она присутствует.

Признаки недостатка глюкозы в организме

Нехватка глюкозы в организме сопровождается следующими признаками.

  1. Вялое и безразличное ко всему состояние.
  2. Слабость мышц и перебои в работе сердца.
  3. Обмороки.

В данном случае необходимо обратиться за помощью к специалисту, а также включить в свой рацион продукты, содержащие глюкозу.

Признаки переизбытка глюкозы в организме

Переизбыток глюкозы в организме внешне может никак не проявляться, может только ухудшиться общее состояние. В данном случае превышение нормы могут показать только анализы. Чтобы это выявить, нужно сдать кровь на содержание сахара. Норма глюкозы составляет 3,5 - 5,5. Превышение ее говорит о серьезном заболевании. В данном случае нудно как можно быстрее посетить эндокринолога.

Глюкоза: должна присутствовать в рационе в достаточном объеме, так как избыток или дефицит этого важного вещества вызывает негативные изменения в организме

Продукты и глюкоза

Продукты, содержащие глюкозу

Глюкоза присутствует в следующих продуктах. Мы укажем ее содержание в 100 гр.

  1. Сахар - 99,9 гр.
  2. Пчелиный мед - 80,3 гр.
  3. Мармелад - 79,4 гр.
  4. Пряники - 77,7 гр.
  5. Сладкая соломка - 69,3 гр.
  6. Финики - 69,2 гр.
  7. Макароны, приготовленные из муки 1 сорта - 68,4 гр.
  8. Перловка - 66,9 гр.
  9. Изюм, приготовленный из винограда кишмиш - 65,8 гр.
  10. Яблочное повидло - 65 гр.
  11. Рис - 62,3 гр.
  12. Овсянка - 61,8 гр.
  13. Мука пшеничная - 61,8 гр.
  14. Кукуруза - 61,4 гр.
  15. Гречка - 60,4 гр.

Продукты, снижающие содержание глюкозы в крови

Если вы столкнулись с такой проблемой, как повышенное содержание глюкозы в крови, но оно никак не связано с различными заболеваниями, то вы можете ее снизить, если включите в свой рацион продукты, которые могу это осуществить. Это разные орехи (например, миндаль, грецкие орехи, арахис и т.д.), соевые сыры, некоторые морепродукты (омары, крабы), свежие овощи (помидоры, огурцы, капуста, кабачки и т.д.), зелень (салат, шпинат), оливки, маслины, черная смородина, цитрусовые фрукты, бобовые культуры, мясо, рыба, чай и т.д. Включение их в свой рацион поможет снизить содержание глюкозы до нужного уровня. При этом вам не придется отказываться от продуктов, содержащих глюкозу.

Зная, где содержится глюкоза, а также продукты, которые выводят ее из крови, вы сможете составить правильное меню, не допускающее ее колебаний. Следовательно, вы всегда будете «заряжены» энергией и ваш организм будет работать без сбоев.

Глюкоза (она же виноградный сахар) – один из основных источников энергии в организме человека.

Именно она необходима для нормальной работы всей мускулатуры (включая сердечную мышцу, кишечник, пищевод, мочеиспускательную систему, которые сформированы с эластичных мышечных волокон) и формирования нейронных импульсов, с помощью которых человек может чувствовать, а головной мозг – регулирует все физиологические процессы.

Тем не менее, современные исследования подтверждают существование так называемой «сахарной зависимости, а также указывают на серьезный вред сахарозы для умственной деятельности.

Другие исследования указывают на связь между употреблением сахара и сильными перепадами настроения, которые могут привести к развитию депрессии.

Действительно ли глюкоза вредит мозгу и нервной системе? Есть ли от нее польза? Как она влияет на память и концентрацию внимания? Сколько сахара нужно потреблять в день? Какие продукты, богатые на глюкозу, врачи рекомендуют включать в рацион, а от каких - лучше отказаться? Все ответы ниже.

Чем полезна глюкоза для умственной деятельности?

Головной мозг «потребляет» порядка 15 – 20% всей вырабатываемой в организме энергии. Он её тратит на выработку гормонов, передачу импульсов, регулирование работы безусловных рефлексов (которые не зависят от сознания человека и выполняются автоматически).

Точнее – мозг тратит энергию. А человек её может получать и из глюкозы, и из жиров, которые, по мере необходимости, синтезируются до простых и сложных углеводов.

Какое питание нужно мозгу и может ли человек прожить без глюкозы, употребляя только жирные продукты и получая энергию из кетонов? Нет, так как скорость распада липидов и получения из них энергии очень низкая. А вот глюкоза усваивается и подается в мозг практически мгновенно (энергию из неё человек получает уже через 30 – 40 минут после употребления), поэтому она так необходима. Отсюда и появилось обывательское мнение, что мозг любит сладкое и «питается» ним.

Почему сладкое считается полезным для мозговой деятельности? Нормальный уровень глюкозы в крови положительно сказывается на работе головного мозга. При этом нормально регулируется дыхание, мышечное сокращение, биение сердца и даже артериальное давление. Углеводы также отвечают за нормальную температуру тела.

Также следует учесть, что именно глюкоза используется для синтеза гормонов (в том числе и «серотонина», который влияет на эмоциональное благополучие и спокойствие человека), что особенно полезно для подвижной нервной системы людей, предрасположенных к невротическим расстройствам, попросту говоря — невротикам. Жиры в этом вообще никак не участвуют.

Какой может быть вред?

Ни углеводы, ни глюкоза нервным клеткам и нейронам мозга никак не вредят, не разрушают и не убивают их. Но при избытке сахаров в крови , а ещё вырастает риск развития атеросклероза. Это происходит из-за следующих факторов:

  1. избыточный сахар в организме трансформируется до жиров (и, как правило, откладывается именно в подкожной жировой клетчатке);
  2. если сахар своевременно не выводится из крови с помощью инсулина, то он продолжает циркулировать в кровеносной системы, постепенно повреждая внутренние стенки сосудов.

А вот как раз и сказывается впоследствии на функциях головного мозга. В большинстве случаев избыток сахара приводит к развитию атеросклероза , из-за чего кровоток в головном мозгу существенно замедляется, нервные клетки постоянно испытывают кислородное голодания, а процесс их регенерации практически останавливается. Как показала практика, высокий уровень сахара в пожилом возрасте – одна из причин возникновения деменции.

Какой уровень глюкозы является вредным? Согласно указаниям ВОЗ (Всемирной Организации Здравоохранения), нормальным уровнем сахара является от 3,3 до 4,9 ммоль/л спустя 2 часа после употребления богатой на углеводы пищи.

Опасен ли дефицит?

Дефицит глюкозы в медицине принято называть гипогликемией. О его причинах мы говорить не будем, а вот характеризуется такое состояние следующими симптомами:

  1. снижение температуры тела (в среднем – от 34 до 35 градусов);
  2. замедленный пульс;
  3. появления «эха» в сердечном ритме (указывает на нарушение нормального кровотока в коронарных сосудах);
  4. замедленная реакция нервной системы на внешние раздражители (из-за низкого уровня глюкозы замедляется процесс усваивания кислорода из крови).

Также ознакомьтесь с инфографикой:

А в крайних случаях, когда уровень глюкозы в организме снижается ниже 1,5 ммоль/л, то есть вероятность того, что у больного возникнет гипогликемическая кома – это своего рода защитная реакция организма на комплексное нарушение физиологических процессов, в следствии недостаточного снабжения глюкозой. То есть, организм автоматически «отключает» и замедляете работу мускулатуры, головного мозга, чтобы сэкономить запасы углеводов в связи с их нехваткой, до нормализации их уровня.

Существует ли «сахарная зависимость»?

В научной медицине такого понятия, как «сахарная зависимость» — не существует. То есть, такой болезни нет. Однако не следует забывать, что глюкоза стимулирует выработку серотонина и допамина , которые вызывают положительные эмоции. И именно к ним головной мозг действительно может «привыкать».

То есть, сахарная зависимость – это привыкание к высокому уровню серотонина . Вряд ли этот эффект можно сравнивать с полноценной наркотической зависимостью, но все же он имеет место быть. Таким образом, сахар действует на мозг как слабый наркотик.

Однако серотонин вырабатывается не только при поедании сладкого. Его активную выработку провоцирует влюбленность, радость, положительные эмоции, полноценный сон. И именно с помощью этих средств от «зависимости» можно избавиться.

Опасна ли так называемая «сахарная зависимость?» , которая вырабатывает инсулин. С течением времени её ткань может истощатся, что приводит к снижению количества вырабатываемого инсулина (в медицине это называется «фиброз тканей поджелудочной железы»). В итоге – развивается гипергликемия, а далее – сахарный диабет 2-го типа. Это, кстати, один из самых распространенных алгоритмов приобретенного диабета, которые диагностируют эндокринологи.

Сколько в день нужно потреблять?

Ранее считалось, что «оптимальной» суточной нормой сахара для взрослого человека являлось 76 грамм сложных углеводов. Однако это – предельный уровень.

Согласно исследованиям Ассоциации по Изучению Болезней Сердца при Гарвардском Университете, оптимальная норма – 37,5 грамм в сутки , то есть, более чем в 2 раза меньше.

При соблюдении этого правила полностью нивелируется возможный вред от избыточного употребления сахара для сердечно-сосудистой системы и головного мозга.

Необходимо понимать, что далеко не все употребленные углеводы усваиваются пищеварительной системой. По большей части это зависит от того, какой продукт был употреблен. Например, из молочного шоколада усваивается порядка 85% глюкозы. А вот из бананов или мандарин – всего 45%.

Можно ли полностью отказаться от сладкого?

Важно отделять понятия сахара и глюкозы как таковой.

Полностью отказаться от глюкозы нельзя, да и это невозможно. В небольшом количестве глюкоза имеется даже в спирте, не говоря уже о фруктах и овощах. То есть, не существует такого рациона, при котором организм бы вовсе не получал глюкозы.

Что будет, если полностью отказаться от глюкозы? В теории – человек начнет активно терять жировую массу , а впоследствии у него разовьется гипогликемическая кома. Предшествовать этому будут постоянное чувство усталости, снижение физической и умственной производительности, резкое снижение артериального давления. Организм при этом будет восполнять запасы энергии с помощью накопленного жира (хотя в первую очередь для этого используется «виноградный сахар», накопленный в мышечной ткани).

Также следует учесть, что без простых углеводов нарушается работа гипофиза, гипоталамуса, что провоцирует резкое снижение иммунного ответа организма . А впоследствии нарушается метаболизм, работа репродуктивной системы. Если же уровень сахара упадет до 0 ммоль/л (по факту – это невозможно), то человек попросту умрет.

Возможен ли полный отказ именно от сахара? Сахар - это химия, продукт полученный искуственным путем, и не важно что из натуральных продуктов. Так что отказаться полностью от поедания магазинного рафинированного сахара можно и нужно! Необходимое количество углеводов вы с лихвой будете получать из своего ежедневного рациона: овощей и фруктов, каш, хлеба и так далее.

Топ 5 наиболее безопасных сладостей

Диетологи выделили целый список «полезных» сладостей для головного мозга – их можно употреблять и при соблюдении строгих диет, и особенно детям, так как именно на детский мозг сладости оказывают особенно пагубное влияние. К таким продуктам относят:

  1. . Особенно полезны инжир, чернослив, финики, курага и изюм. Основа их состава – это те самые углеводы (фруктоза и производные глюкозы), клетчатка и вода. Они не только обеспечивают организм энергией, но ещё и нормализуют работу всей пищеварительной системы.
  2. В его составе – фруктоза (до 50%), минеральные микроэлементы, флавониды, фитонциды и вода. Регулярное употребление меда в разы снижает вероятность развития атеросклероза и последующего инсульта.
  3. В нем содержится легкоусваиваемые углеводы. А в какао – флавониды, которые дополнительно стимулируют выработку серотонина. Ещё ученые утверждают, что употребление черного шоколада полезно для работы сердца – улучшается чувствительность синусового узла и нормализуется сердечный ритм.
  4. Мармелад. В его основе – пектин (его получают из натуральной растворимой клетчатки) и сахар. Только нужно учесть – для мозга полезен домашний натуральный мармелад, а вот тот, который продают в магазинах, нередко содержит в себе ещё и крахмал, и растительные масла.
  5. Ягоды. Содержат большое количество фруктозы, фитонцидов и аскорбиновой кислоты (которая снижает концентрацию холестерина низкой плотности в крови).

А вот спортсменам ещё можно посоветовать есть бананы – для пищеварительной системы они не самые полезные, но после физических нагрузок быстро нормализуют уровень глюкозы и не дают мозгу испытать кислородное голодание.

А чего лучше избегать?

А вот от следующих сладостей врачи рекомендуют категорически отказываться, особенно детям (у которых избыток простых углеводов приводит к развитию гиперактивности):

  1. Фабричное печенье и другая сдоба. С целью экономии и для увеличения срока годности производители в такие сладости часто добавляют маргарин растительное кокосовое масло – они практически не усваиваются и никакой пищевой ценности не несут. При этом такие десерты имеют в составе только простые углеводы, то есть, расщепляются быстро и приводят к скачкообразному повышению уровня сахара в крови («сложные» — предпочтительны, а «простые» рекомендуется употреблять на завтрак).
  2. Шоколадные батончики. Как ни странно, но как такового шоколада в них минимум. Вместо него используется нуга, подсластители, в основе которых – опять жир. А избыток жира в организме ухудшает кровоток в головном мозгу – капилляры и артерии попросту забиваются атеросклеротическими бляшками.
  3. Крем, молочные десерты. Тоже часто содержат растительные жиры, а ещё антибиотики – с их помощью увеличивают срок годности продуктов. А в качестве углеводов здесь используются подсластители, которые относятся к простым сахарам и повышают уровень глюкозы скачкообразно (особенно это опасно при сахарном диабете 1-го типа, когда инсулин вводят с помощью инъекций, а в организме он вообще не вырабатывается).
  4. Жевательный мармелад. Практически всегда в него добавляют вкусовые стимуляторы, а вот сахара – минимум (чаще всего – это подсластители). Поэтому энергии из такого десерта получается очень мало, а вот на головной мозг многие консерванты действуют негативно (к примеру, Е320, который добавляют для увеличения срока годности, провоцирует накопление в головном мозгу, действует как канцероген и может вызывать рак головного мозга).

Итого, глюкоза полезна для головы только в том случае, если в организме она не в избытке, а также нет дефицита сахаров. В этом случае она используется для регулирования всех физиологических процессов, а также отвечает за формирование нейронных импульсов.

Также глюкоза нужна для выработки гормонов, в частности, серотонина, оказывающего прямое влияние на эмоциональное здоровье человека. А вот избыток глюкозы может вызывать «сахарную зависимость», из-за которой впоследствии развивается сахарный диабет 2-го типа, а ещё негативно сказывается на работе всей сердечно-сосудистой системы (из-за чего «страдает» и головной мозг).