Самодельный ветрогенератор с вертикальной осью. Самодельный ветрогенератор,ветряк.Ветрогенератор своими руками с вертикальной осью вращения

  • Дата: 03.05.2020

В последнее время поклонники возобновляемых источников энергии отдают предпочтение вертикальным конструкциям ветряков. Горизонтальные уходят в историю. Дело не только в том, что смастерить вертикальный ветрогенератор своими руками легче, чем горизонтальный. Основным мотивом такого выбора является эффективность и надежность.

Преимущества вертикального ветряка

1. Вертикальная конструкция ветряка лучше ловит ветер: нет необходимости определять, откуда он дует и ориентировать лопасти под воздушный поток. 2. Установка такого оборудования не требует высокого его расположения, а это значит, что вертикальный ветряк своими руками будет легче обслужить. 3. Конструкция содержит меньше движущихся деталей, что повышает ее надежность. 4. Оптимальный профиль лопастей повышает КПД ветряка. 5. Многополюсный генератор, использующийся для выработки электроэнергии, является менее шумным.

Расскажем о том, как изготовить детали и собрать вертикальный ветрогенератор своими руками.

Алгоритм действий при изготовлении турбины своими руками

1. Опоры (верхняя и нижняя) лопастей представляют собой две концентрические окружности одинаковых по размеру. Изготавливают их из ABS пластика – вырезают лобзиком. В одной из них (она будет верхней) проделывают отверстие диаметром 300 мм.

2. Нижняя опора должна опираться на хаб, в качестве которой можно использовать ступицу легкового автомобиля. Для соединения деталей нужно разметить и высверлить 4 отверстия. 3. Собирая вертикальный ветрогенератор своими руками, особое внимание уделяют креплению лопастей. Для правильного расположения лопастей нужен шаблон. На нижней опоре чертим шестиконечную звезду (звезду Давида), углы которой будут находиться на краю окружности. Проецируем чертеж на верхнюю опору. Лопасти изготавливаем из тонкого листового металла в виде полоски длиной 1160 мм, ширина которых – чуть больше стороны луча звезды.

4. Крепят лопасти двумя уголками вверху и внизу, при этом они должны быть изогнуты так, чтобы образовалась четверть круга. Располагают их друг за другом по окружности, устанавливая на грани лучей.

Изготавливаем ротор

1. Основания для ротора диаметром 400 мм выпиливают из фанеры толщиной 10 мм. По внешнему радиусу с помощью жидких гвоздей или эпоксидного клея крепят постоянные неодимовые магниты с высокой индуктивностью. Располагают их аналогично цифрам на часовом циферблате (ровно 12 шт) с соблюдением полярности (их рекомендуется промаркировать). Чтобы магниты не сошли со своего места, их временно фиксируют распорками из деревянных клиньев.

2. Второй ротор делают аналогично и симметрично первому. Разница в полярности магнитов – она должна быть противоположной.

Как собрать статор

Статор собирается из 9-ти катушек индуктивности. Должно быть з группы последовательно соединенных катушек (по 3 шт. в группе): конец предыдущей соединяется с началом следующей (конфигурация «звезда»). Располагаются катушки симметрично в вершинах трех треугольников, вписанных в окружность. Намотка выполняется медным проводом 0,51 мм в диаметре (тип – 24 AWG). Необходимо 320 витков. Это позволит получить на выходе генератора напряжение 100 В при 120 об/мин. турбины. Вертикальный ветрогенератор своими руками можно смастерить с различными параметрами выходного напряжения и тока путем уменьшения/увеличения количества витков и диаметра намоточного провода статора. Витки катушек наматываются одинаково. Необходимо соблюдать направление намотки и отмечать ее начало и конец. Поверх наружного витка наносится эпоксидный клей и наматывается в четырех местах изолента – для препятствования разматыванию.

Правила и нюансы соединения катушек

Концы катушек необходимо очистить от лаковой изоляции. Соединения выполняются пайкой. Подготовленные таким образом катушки укладывают на бумажный лист, на который наносят схему их расположения (в соответствии с положением постоянных магнитов ротора). Фиксируют их скотчем. Все свободные поля бумаги (кроме центров катушек) заклеивают стеклотканью, заливая эпоксидную смолу с отвердителем. Выводы обмоток должны располагаться снаружи или внутри статора. Для крепления кронштейна в статоре проделывают отверстия.

Окончательная сборка и установка

На одну ось собираются (сверху – вниз): нижняя опора лопастей, диск с постоянными магнитами (верхнее основание ротора), статор, нижнее основание ротора и ступица. Все составляющие крепятся шпильками к кронштейну. Для хорошего контакта используем болты из нержавеющей стали. Доработав остальные мелочи, получаем готовое устройство. Вертикальный ветряк своими руками следует устанавливать на отрытой местности, там, где сила ветра наибольшая. Желательно, чтобы вблизи не было высоких сооружений. Тогда ветрогенератор будет эффективно вырабатывать электроэнергию, что поможет сэкономить средства.

Россия в отношении ветроэнергетических ресурсов занимает двоякое положение. С одной стороны, благодаря огромной общей площади и обилию равнинных местностей ветра в целом много, и он большей частью ровный. С другой – наши ветры преимущественно низкопотенциальные, медленные, см. рис. С третьей, в мало обжитых местностях ветры буйные. Исходя из этого, задача завести на хозяйстве ветрогенератор вполне актуальна. Но, чтобы решить – покупать достаточно дорогое устройство, или сделать его своими руками, нужно как следует подумать, какой тип (а их очень много) для какой цели выбрать.

Основные понятия

  1. КИЭВ – коэффициент использования энергии ветра. В случае применения для расчета механистической модели плоского ветра (см. далее) он равен КПД ротора ветросиловой установки (ВСУ).
  2. КПД – сквозной КПД ВСУ, от набегающего ветра до клемм электрогенератора, или до количества накачанной в бак воды.
  3. Минимальная рабочая скорость ветра (МРС) – скорость его, при которой ветряк начинает давать ток в нагрузку.
  4. Максимально допустимая скорость ветра (МДС) – его скорость, при которой выработка энергии прекращается: автоматика или отключает генератор, или ставит ротор во флюгер, или складывает его и прячет, или ротор сам останавливается, или ВСУ просто разрушается.
  5. Стартовая скорость ветра (ССВ) – при такой его скорости ротор способен провернуться без нагрузки, раскрутиться и войти в рабочий режим, после чего можно включать генератор.
  6. Отрицательная стартовая скорость (ОСС) – это значит, что ВСУ (или ВЭУ – ветроэнергетическая установка, или ВЭА, ветроэнергетический агрегат) для запуска при любой скорости ветра требует обязательной раскрутки от постороннего источника энергии.
  7. Стартовый (начальный) момент – способность ротора, принудительно заторможенного в потоке воздуха, создавать вращающий момент на валу.
  8. Ветродвигатель (ВД) – часть ВСУ от ротора до вала генератора или насоса, или другого потребителя энергии.
  9. Роторный ветрогенератор – ВСУ, в которой энергия ветра преобразуется во вращательный момент на валу отбора мощности посредством вращения ротора в потоке воздуха.
  10. Диапазон рабочих скоростей ротора – разность между МДС и МРС при работе на номинальную нагрузку.
  11. Тихоходный ветряк – в нем линейная скорость частей ротора в потоке существенно не превосходит скорость ветра или ниже ее. Динамический напор потока непосредственно преобразуется в тягу лопасти.
  12. Быстроходный ветряк – линейная скорость лопастей существенно (до 20 и более раз) выше скорости ветра, и ротор образует свою собственную циркуляцию воздуха. Цикл преобразования энергии потока в тягу сложный.

Примечания:

  1. Тихоходные ВСУ, как правило, имеют КИЭВ ниже, чем быстроходные, но имеют стартовый момент, достаточный для раскрутки генератора без отключения нагрузки и нулевую ССВ, т.е. абсолютно самозапускающиеся и применимы при самых слабых ветрах.
  2. Тихоходность и быстроходность – понятия относительные. Бытовой ветряк на 300 об/мин может быть тихоходным, а мощные ВСУ типа EuroWind, из которых набирают поля ветроэлектростанций, ВЭС (см. рис.) и роторы которых делают порядка 10 об/мин – быстроходные, т.к. при таком их диаметре линейная скорость лопастей и их аэродинамика на большей части размаха – вполне «самолетные», см. далее.

Какой нужен генератор?

Электрический генератор для ветряка бытового назначения должен вырабатывать электроэнергию в широком диапазоне скоростей вращения и обладать способностью самозапуска без автоматики и внешних источников питания. В случае использования ВСУ с ОСС (ветряки с раскруткой), обладающих, как правило, высокими КИЭВ и КПД, он должен быть и обратимым, т.е. уметь работать и как двигатель. При мощностях до 5 кВт этому условию удовлетворяют электрические машины с постоянными магнитами на основе ниобия (супермагнитами); на стальных или ферритовых магнитах можно рассчитывать не более чем на 0,5-0,7 кВт.

Примечание: асинхронные генераторы переменного тока или коллекторные с ненамагниченным статором не годятся совершенно. При уменьшении силы ветра они «погаснут» задолго до того, как его скорость упадет до МРС, и потом сами не запустятся.

Отличное «сердце» ВСУ мощностью от 0,3 до 1-2 кВт получается из автогенератора переменного тока со встроенным выпрямителем; таких сейчас большинство. Во-первых, они держат выходное напряжение 11,6-14,7 В в довольно широком диапазоне скоростей без внешних электронных стабилизаторов. Во-вторых, кремниевые вентили открываются, когда напряжение на обмотке достигнет примерно 1,4 В, а до этого генератор «не видит» нагрузки. Для этого генератор нужно уже довольно прилично раскрутить.

В большинстве случаев автогенератор можно непосредственно, без зубчатой или ременной передачи, соединить с валом быстроходного ВД, подобрав обороты выбором количества лопастей, см. ниже. «Быстроходки» имеют малый или нулевой стартовый момент, но ротор и без отключения нагрузки успеет достаточно раскрутиться, прежде чем вентили откроются и генератор даст ток.

Выбор по ветру

Прежде чем решать, какой сделать ветрогенератор, определимся с местной аэрологией. В серо-зеленоватых (безветренных) областях ветровой карты хоть какой-то толк будет лишь от парусного ветродвигателя (и них далее поговорим). Если необходимо постоянное энергоснабжение, то придется добавить бустер (выпрямитель со стабилизатором напряжения), зарядное устройство, мощную аккумуляторную батарею, инвертор 12/24/36/48 В постоянки в 220/380 В 50 Гц переменного тока. Обойдется такое хозяйство никак не менее $20.000, и снять долговременную мощность более 3-4 кВт вряд ли получится. В общем, при непреклонном стремлении к альтернативной энергетике лучше поискать другой ее источник.

В желто-зеленых , слабоветренных местах, при потребности в электричестве до 2-3 кВт самому можно взяться за тихоходный вертикальный ветрогенератор . Их разработано несть числа, и есть конструкции, по КИЭВ и КПД почти не уступающие «лопастникам» промышленного изготовления.

Если же ВЭУ для дома предполагается купить, то лучше ориентироваться на ветряк с парусным ротором. Споров и них много, и в теории пока еще не все ясно, но работают. В РФ «парусники» выпускают в Таганроге на мощность 1-100 кВт.

В красных , ветреных, регионах выбор зависит от потребной мощности. В диапазоне 0,5-1,5 кВт оправданы самодельные «вертикалки»; 1,5-5 кВт – покупные «парусники». «Вертикалка» тоже может быть покупной, но обойдется дороже ВСУ горизонтальной схемы. И, наконец, если требуется ветряк мощностью 5 кВт и более, то выбирать нужно между горизонтальными покупными «лопастниками» или «парусниками».

Примечание: многие производители, особенно второго эшелона, предлагают комплекты деталей, из которых можно собрать ветрогенератор мощностью до 10 кВт самостоятельно. Обойдется такой набор на 20-50% дешевле готового с установкой. Но прежде покупки нужно внимательно изучить аэрологию предполагаемого места установки, а затем по спецификациям подобрать подходящие тип и модель.

О безопасности

Детали ветродвигателя бытового назначения в работе могут иметь линейную скорость, превосходящую 120 и даже 150 м/с, а кусочек любого твердого материала весом в 20 г, летящий со скоростью 100 м/с, при «удачном» попадании убивает здорового мужика наповал. Стальная, или из жесткого пластика, пластина толщиной 2 мм, движущаяся со скоростью 20 м/с, рассекает его же напополам.

Кроме того, большинство ветряков мощностью более 100 Вт довольно сильно шумят. Многие порождают колебания давления воздуха сверхнизкой (менее 16 Гц) частоты – инфразвуки. Инфразвуки неслышимы, но губительны для здоровья, а распространяются очень далеко.

Примечание: в конце 80-х в США был скандал – пришлось закрыть крупнейшую на тот момент в стране ВЭС. Индейцы из резервации в 200 км от поля ее ВСУ доказали в суде, что резко участившиеся у них после ввода ВЭС в эксплуатацию расстройства здоровья обусловлены ее инфразвуками.

В силу указанных выше причин установка ВСУ допускается на расстоянии не менее 5 их высот от ближайших жилых строений. Во дворах частных домовладений можно устанавливать ветряки промышленного изготовления, соответствующим образом сертифицированные. На крышах ставить ВСУ вообще нельзя – при их работе, даже у маломощных, возникают знакопеременные механические нагрузки, способные вызвать резонанс строительной конструкции и ее разрушение.

Примечание: высотой ВСУ считается наивысшая точка ометаемого диска (для лопастных роторов) или геомерической фигуры (для вертикальных ВСУ с ротором на древке). Если мачта ВСУ или ось ротора выступают вверх еще выше, высота считается по их топу – верхушке.

Ветер, аэродинамика, КИЭВ

Самодельный ветрогенератор подчиняется тем же законам природы, что и заводской, рассчитанный на компьютере. И самодельщику основы его работы нужно понимать очень хорошо – в его распоряжении чаще всего нет дорогих суперсовременных материалов и технологического оборудования. Аэродинамика же ВСУ ох как непроста…

Ветер и КИЭВ

Для расчета серийных заводских ВСУ используется т. наз. плоская механистическая модель ветра. В ее основе следующие предположения:

  • Скорость и направление ветра постоянны в пределах эффективной поверхности ротора.
  • Воздух – сплошная среда.
  • Эффективная поверхность ротора равна ометаемой площади.
  • Энергия воздушного потока – чисто кинетическая.

При таких условиях максимальную энергию единицы объема воздуха вычисляют по школьной формуле, полагая плотность воздуха при нормальных условиях 1,29 кг*куб. м. При скорости ветра 10 м/с один куб воздуха несет в себе 65 Дж, и с одного квадрата эффективной поверхности ротора можно, при 100% КПД всей ВСУ, снять 650 Вт. Это весьма упрощенный подход – все знают, что ветер идеально ровным не бывает. Но на это приходится идти, чтобы обеспечить повторяемость изделий – обычное в технике дело.

Плоскую модель игнорировать не следует, она дает четкий минимум доступной энергии ветра. Но воздух, во-первых, сжимаем, во-вторых, очень текуч (динамическая вязкость всего 17,2 мкПа*с). Это значит, поток может обтекать ометаемую площадь, уменьшая эффективную поверхность и КИЭВ, что чаще всего и наблюдается. Но в принципе возможна и обратная ситуация: ветер стекается к ротору и площадь эффективной поверхности тогда окажется больше ометаемой, а КИЭВ – больше 1 относительно его же для плоского ветра.

Приведем два примера. Первый – прогулочная, довольно тяжеловесная, яхта может идти не только против ветра, но и быстрее его. Ветер имеется в виду внешний; вымпельный ветер все равно должен быть быстрее, иначе как он судно потянет?

Второй – классика авиационной истории. На испытаниях МИГ-19 оказалось, что перехватчик, который был на тонну тяжелее фронтового истребителя, по скорости разгоняется быстрее. С теми же движками в том же планере.

Теоретики не знали, что и думать, и всерьез засомневались в законе сохранения энергии. В конце концов оказалось – дело в выступающем из воздухозаборника конусе обтекателя РЛС. От его носка к обечайке возникало уплотнение воздуха, как бы сгребавшее его со сторон к компрессорам двигателей. С тех пор ударные волны прочно вошли в теорию как полезные, и фантастические летные данные современных самолетов в немалой степени обусловлены их умелым использованием.

Аэродинамика

Развитие аэродинамики принято делить на две эпохи – до Н. Г. Жуковского и после. Его доклад «О присоединенных вихрях» от 15 ноября 1905 г. стал началом новой эры в авиации.

До Жуковского летали на поставленных плашмя парусах: полагалось, что частицы набегающего потока отдают весь свой импульс передней кромке крыла. Это позволяло сразу избавиться от векторной величины – момента количества движения – порождавшей зубодробительную и чаще всего неаналитическую математику, перейти к куда более удобным скалярным чисто энергетическим соотношениям, и получить в итоге расчетное поле давления на несущую плоскость, более-менее похожее на настоящее.

Такой механистический подход позволил создать аппараты, способные худо-бедно подняться в воздух и совершить перелет из одного места в другое, не обязательно грохнувшись на землю где-то по пути. Но стремление увеличить скорость, грузоподъемность и другие летные качества все больше выявляло несовершенство первоначальной аэродинамической теории.

Идея Жуковского была такова: вдоль верхней и нижней поверхностей крыла воздух проходит разный путь. Из условия непрерывности среды (пузыри вакуума сами по себе в воздухе не образуются) следует, что скорости верхнего и нижнего потоков, сходящих с задней кромки, должны отличаться. Вследствие пусть малой, но конечной вязкости воздуха там из-за разности скоростей должен образоваться вихрь.

Вихрь вращается, а закон сохранения количества движения, столь же непреложный, как и закон сохранения энергии, справедлив и для векторных величин, т.е. должен учитывать и направление движения. Поэтому тут же, на задней кромке, должен сформироваться противоположно вращающийся вихрь с таким же вращательным моментом. За счет чего? За счет энергии, вырабатываемой двигателем.

Для практики авиации это означало революцию: выбрав соответствующий профиль крыла, можно было присоединенный вихрь пустить вокруг крыла в виде циркуляции Г, увеличивающей его подъемную силу. Т.е., затратив часть, а для больших скоростей и нагрузок на крыло – большую часть, мощности мотора, можно создать вокруг аппарата воздушный поток, позволяющий добиться лучших летных качеств.

Это делало авиацию авиацией, а не частью воздухоплавания: теперь летательный аппарат мог сам создавать себе нужную для полета среду и не быть более игрушкой воздушных потоков. Нужен только двигатель помощнее, и еще и еще мощнее…

Снова КИЭВ

Но у ветряка мотора нет. Он, наоборот, должен отбирать энергию у ветра и давать ее потребителям. И здесь выходит – ноги вытащил, хвост увяз. Пустили слишком мало энергии ветра на собственную циркуляцию ротора – она будет слабой, тяга лопастей – малой, а КИЭВ и мощность – низкими. Отдадим на циркуляцию много – ротор при слабом ветре будет на холостом ходу крутиться как бешеный, но потребителям опять достается мало: чуть дали нагрузку, ротор затормозился, ветер сдул циркуляцию, и ротор стал.

Закон сохранения энергии «золотую середину» дает как раз посерединке: 50% энергии даем в нагрузку, а на остальные 50% подкручиваем поток до оптимума. Практика подтверждает предположения: если КПД хорошего тянущего пропеллера составляет 75-80%, то КИЭВ так же тщательно рассчитанного и продутого в аэродинамической трубе лопастного ротора доходит до 38-40%, т.е. до половины от того, чего можно добиться при избытке энергии.

Современность

Ныне аэродинамика, вооруженная современной математикой и компьютерами, все более уходит от неизбежно что-то да упрощающих моделей к точному описанию поведения реального тела в реальном потоке. И тут, кроме генеральной линии – мощность, мощность, и еще раз мощность! – обнаруживаются пути побочные, но многообещающие как раз при ограниченном количестве поступающей в систему энергии.

Известный авиатор-альтернативщик Пол Маккриди еще в 80-х создал самолет, с двумя моторчиками от бензопилы мощностью в 16 л.с. показавший 360 км/ч. Причем шасси его было трехопорным неубирающимся, а колеса – без обтекателей. Ни один из аппаратов Маккриди не вышел на линию и не встал на боевое дежурство, но два – один с поршневыми моторами и пропеллерами, а другой реактивный – впервые в истории облетели вокруг земного шара без посадки на одной заправке.

Парусов, породивших изначальное крыло, развитие теории тоже коснулось весьма существенно. «Живая» аэродинамика позволила яхтам при ветре в 8 узл. встать на подводные крылья (см. рис.); чтобы разогнать такую громадину до нужной скорости гребным винтом, требуется двигатель не менее 100 л.с. Гоночные катамараны при таком же ветре ходят со скоростью около 30 узл. (55 км/ч).

Есть и находки совершенно нетривиальные. Любители самого редкого и экстемального спорта – бейсджампинга – надев апециальный костюм-крыло, вингсьют, летают без мотора, маневрируя, на скорости более 200 км/ч (рис. справа), а затем плавно приземляются в заранее выбранном месте. В какой сказке люди летают сами по себе?

Разрешились и многие загадки природы; в частности – полет жука. По классической аэродинамике, он летать не способен. Точно так же, как и родоначальник «стелсов» F-117 с его крылом ромбовидного профиля тоже не способен подняться в воздух. А МИГ-29 и Су-27, которые некоторое время могут лететь хвостом вперед, и вовсе ни в какие представления не укладываются.

И почему тогда, занимаясь ветродвигателями, не забавой и не орудием уничтожения себе подобных, а источником жизненно важного ресурса, нужно плясать непременно от теории слабых потоков с ее моделью плоского ветра? Неужели не найдется возможности продвинуться дальше?

Чего ожидать от классики?

Однако от классики отказываться ни в коем случае не следует. Она дает основу, не оперевшись на которую нельзя подняться выше. Точно так же, как теория множеств не отменяет таблицу умножения, а от квантовой хромодинамики яблоки с деревьев вверх не улетят.

Итак, на что можно рассчитывать при классическом подходе? Посмотрим на рисунок. Слева – типы роторов; они изображены условно. 1 – вертикальный карусельный, 2 – вертикальный ортогональный (ветряная турбина); 2-5 – лопастные роторы с разным количеством лопастей с оптимизированными профилями.

Справа по горизонтальной оси отложена относительная скорость ротора, т.е., отношение линейной скорости лопасти к скорости ветра. По вертикальной вверх – КИЭВ. А вниз – опять же относительный крутящий момент. Единичным (100%) крутящим моментом считается такой, который создает насильно заторможенный в потоке ротор со 100% КИЭВ, т.е. когда вся энергия потока преобразуется во вращающее усилие.

Такой подход позволяет делать далеко идущие выводы. Скажем, количество лопастей нужно выбирать не только и не столько по желательной скорости вращения: 3- и 4-лопастники сразу много теряют по КИЭВ и вращательному моменту по сравнению с хорошо работающими примерно в том же диапазоне скорстей 2- и 6-лопастниками. А внешне похожие карусель и ортогонал обладают принципиально разными свойствами.

В целом же предпочтение следует отдавать лопастным роторам, кроме случаев, когда требуются предельная дешевизна, простота, необслуживаемый самозапуск без автоматики и невозможен подъем на мачту.

Примечание: о парусных роторах поговорим особо – они, похоже, в классику не укладываются.

Вертикалки

ВСУ с вертикальной осью вращения имеют неоспоримое для быта преимущество: их узлы, требующие обслуживания, сосредоточены внизу и не нужен подъем наверх. Там остается, и то не всегда, упорно-опорный самоустанавливающийся подшипник, но он прочен и долговечен. Поэтому, проектируя простой ветрогенератор, отбор вариантов нужно начинать с вертикалок. Основные их типы представлены на рис.

ВС

На первой позиции – самый простейший, чаще всего называемый ротором Савониуса. На самом деле его изобрели в 1924 г. в СССР Я. А. и А. А. Воронины, а финский промышленник Сигурд Савониус бессовестно присвоил себе изобретение, проигнорировав советское авторское свидетельство, и начал серийный выпуск. Но внедрение в судьбе изобретения значит очень много, поэтому мы, чтобы не ворошить прошлое и не тревожить прах усопших, назовем этот ветряк ротором Ворониных-Савониуса, или для краткости, ВС.

ВС для самодельщика всем хорош, кроме «паровозного» КИЭВ в 10-18%. Однако в СССР над ним работали много, и наработки есть. Ниже мы рассмотрим усовершенствованную конструкцию, не намного более сложную, но по КИЭВ дающую фору лопастникам.

Примечание: двухлопастный ВС не крутится, а дергается рывками; 4-лопастный лишь немного плавнее, но много теряет в КИЭВ. Для улучшения 4-«корытные» чаще всего разносят на два этажа – пара лопастей внизу, а другая пара, повернутая на 90 градусов по горизонтали, над ними. КИЭВ сохраняется, и боковые нагрузки на механику слабеют, но изгибные несколько возрастают, и при ветре более 25 м/с у такой ВСУ на древке, т.е. без растянутого вантами подшипника над ротором, «срывает башню».

Дарье

Следующий – ротор Дарье; КИЭВ – до 20%. Он еще проще: лопасти – из простой упругой ленты безо всякого профиля. Теория ротора Дарье еще недостаточно разработана. Ясно только, что начинает он раскручиваться за счет разности аэродинамического сопротивления горба и кармана ленты, а затем становится вроде как быстроходным, образуя собственную циркуляцию.

Вращательный момент мал, а в стартовых положениях ротора параллельно и перпендикулярно ветру вообще отсутствует, поэтому самораскрутка возможна только при нечетном количестве лопастей (крыльев?) В любом случае на время раскрутки нагрузку от генератора нужно отключать.

Есть у ротора Дарье еще два нехороших качества. Во-первых, при вращении вектор тяги лопасти описывает полный оборот относительно ее аэродинамического фокуса, и не плавно, а рывками. Поэтому ротор Дарье быстро разбивает свою механику даже при ровном ветре.

Во-вторых, Дарье не то что шумит, а вопит и визжит, вплоть до того, что лента рвется. Происходит это вследствие ее вибрации. И чем больше лопастей, тем сильнее рев. Так что Дарье если и делают, то двухлопастными, из дорогих высокопрочных звукопоглощающих материалов (карбона, майлара), а для раскрутки посередине мачты-древка приспосабливают небольшой ВС.

Ортогонал

На поз. 3 – ортогональный вертикальный ротор с профилированными лопастями. Ортогональный потому, что крылья торчат вертикально. Переход от ВС к ортогоналу иллюстрирует рис. слева.

Угол установки лопастей относительно касательной к окружности, касающейся аэродинамических фокусов крыльев, может быть как положительным (на рис.), так и отрицательным, сообразно силе ветра. Иногда лопасти делают поворотными и ставят на них флюгерки, автоматически держащие «альфу», но такие конструкции часто ломаются.

Центральное тело (голубое на рис.) позволяет довести КИЭВ почти до 50% В трехлопастном ортогонале оно должно в разрезе иметь форму треугольника со слегка выпуклыми сторонами и скругленными углами, а при большем количестве лопастей достаточно простого цилиндра. Но теория для ортогонала оптимальное количество лопастей дает однозначно: их должно быть ровно 3.

Ортогонал относится к быстроходным ветрякам с ОСС, т.е. обязательно требует раскрутки при вводе в эксплуатацию и после штиля. По ортогональной схеме выпускаются серийные необслуживаемые ВСУ мощностью до 20 кВт.

Геликоид

Геликоидный ротор, или ротор Горлова (поз. 4) – разновидность ортогонала, обеспечивающая равномерное вращение; ортогонал с прямыми крыльями «рвет» лишь немного слабее двухлопастного ВС. Изгиб лопастей по геликоиде позволяет избежать потерь КИЭВ из-за их кривизны. Хотя часть потока кривая лопасть и отбрасывает, не используя, но зато и загребает часть в зону наибольшей линейной скорости, компенсируя потери. Геликоиды используют реже прочих ветряков, т.к. они вследствие сложности изготовления оказываются дороже равных по качеству собратьев.

Бочка-загребушка

На 5 поз. – ротор типа ВС, окруженный направляющим аппаратом; его схема представлена на рис. справа. В промышленном исполнении встречается редко, т.к. дорогостоящий отвод земли не компенсирует прироста мощности, а материалоемкость и сложность производства велики. Но самодельщик, боящийся работы – уже не мастер, а потребитель, и, если нужно не более 0,5-1,5 кВт, то для него «бочка-загребушка» лакомый кусок:

  • Ротор такого типа абсолютно безопасен, бесшумен, не создает вибраций и может быть установлен где угодно, хоть на детской площадке.
  • Согнуть «корыта» из оцинковки и сварить каркас из труб – работа ерундовая.
  • Вращение – абсолютно равномерное, детали механики можно взять самые дешевые или из хлама.
  • Не боится ураганов – слишком сильный ветер не может протолкнуться в «бочку»; вокруг нее возникает обтекаемый вихревой кокон (мы с этим эффектом еще столкнемся).
  • А самое главное – поскольку поверхность «загребушки» в несколько раз больше таковой ротора внутри, КИЭВ может быть и сверхединичным, а вращательным момент уже при 3 м/с у «бочки» трехметрового диаметра такой, что генератору на 1 кВт с предельной нагрузкой, как говорится, лучше и не дергаться.

Видео: ветрогенератор Ленца

В 60-х в СССР Е. С. Бирюков запатентовал карусельную ВСУ с КИЭВ 46%. Немного позже В. Блинов добился от конструкции на том же принципе КИЭВ 58%, но данных о ее испытаниях нет. А натурные испытания ВСУ Бирюкова были проведены сотрудниками журнала «Изобретатель и рационализатор». Двухэтажный ротор диаметром 0,75 м и высотой 2 м при свежем ветре раскручивал на полную мощность асинхронный генератор 1,2 кВт и выдерживал без поломки 30 м/с. Чертежи ВСУ Бирюкова приведены на рис.

  1. ротор из кровельной оцинковки;
  2. самоустанавливающийся двухрядный шариковый подшипник;
  3. ванты – 5 мм стальной трос;
  4. ось-древко – стальная труба с толщиной стенок 1,5-2,5 мм;
  5. рычаги аэродинамического регулятора оборотов;
  6. лопасти регулятора оборотов – 3-4 мм фанера или листовой пластик;
  7. тяги регулятора оборотов;
  8. груз регулятора оборотов, его вес определяет частоту вращения;
  9. ведущий шкив – велосипедное колесо без шины с камерой;
  10. подпятник – упорно-опорный подшипник;
  11. ведомый шкив – штатный шкив генератора;
  12. генератор.

Бирюков на свою ВСУ получил сразу несколько авторских свидетельств. Во-первых, обратите внимание на разрез ротора. При разгоне он работает подобно ВС, создавая большой стартовый момент. По мере раскрутки во внешних карманах лопастей создается вихревая подушка. С точки зрения ветра, лопасти становятся профилированными, и ротор превращается в быстроходный ортогонал, причем виртуальный профиль меняется соответственно силе ветра.

Во-вторых, профилированный канал между лопастями в рабочем диапазоне скоростей работает как центральное тело. Если же ветер усиливается, то в нем также создается вихревая подушка, выходящая за пределы ротора. Возникает такой же вихревой кокон, как вокруг ВСУ с направляющим аппаратом. Энергия на его создание берется от ветра, и тому на поломку ветряка ее уже не хватает.

В-третьих, регулятор оборотов предназначен прежде всего для турбины. Он держит ее обороты оптимальными с точки зрения КИЭВ. А оптимум частоты вращения генератора обеспечивается выбором передаточного отношения механики.

Примечание: после публикаций в ИР за 1965 г. ВСУ Бирюкова канула в небытие. Ответа от инстанций автор так и не дождался. Судьба многих советских изобретений. Говорят, какой-то японец стал миллиардером, регулярно читая советские популярно-технические журналы и патентуя у себя все, заслуживающее внимания.

Лопастники

Как у сказано, по классике горизонтальный ветрогенератор с лопастным ротором – наилучший. Но, во-первых, ему нужен стабильный хотя бы средней силы ветер. Во-вторых, конструкция для самодельщика таит в себе немало подводных камней, из-за чего нередко плод долгих упорных трудов в лучшем случае освещает туалет, прихожую или крыльцо, а то и оказывается способен только раскрутить самого себя.

По схемам на рис. рассмотрим подробнее; позиции:

  • Фиг. А:
  1. лопасти ротора;
  2. генератор;
  3. станина генератора;
  4. защитный флюгер (ураганная лопата);
  5. токосъемник;
  6. шасси;
  7. поворотный узел;
  8. рабочий флюгер;
  9. мачта;
  10. хомут под ванты.
  • Фиг. Б, вид сверху:
  1. защитный флюгер;
  2. рабочий флюгер;
  3. регулятор натяжения пружины защитного флюгера.
  • Фиг. Г, токосъемник:
  1. коллектор с медными неразрезными кольцевыми шинами;
  2. подпружиненные меднографитовые щетки.

Примечание: ураганная защита для горизонтального лопастника диаметром более 1 м совершенно необходима, т.к. создать вокруг себя вихревой кокон он не способен. При меньших размерах можно добиться выносливости ротора до 30 м/с с лопастями из пропилена.

Итак, где нас ждут «спотыки»?

Лопасти

Рассчитывать добиться мощности на валу генератора более 150-200 Вт на лопастях любого размаха, вырезанных из толстостенной пластиковой трубы, как часто советуют – надежды беспросветного дилетанта. Лопасть из трубы (если только она не настолько толстая, что используется просто как заготовка) будет иметь сегментный профиль, т.е. его верхняя, или обе поверхности будут дугами окружности.

Сегментные профили пригодны для несжимаемой среды, скажем, для подводных крыльев или лопастей гребного винта. Для газов же нужна лопасть переменного профиля и шага, для примера см. рис.; размах – 2 м. Это будет сложное и трудоемкое изделие, требующее кропотливого расчета во всеоружии теории, продувок в трубе и натурных испытаний.

Генератор

При насадке ротора прямо на его вал штатный подшипник скоро разобьется – одинаковой нагрузки на все лопасти в ветряках не бывает. Нужен промежуточный вал со специальным опорным подшипником и механическая передача от него на генератор. Для больших ветряков опорный подшипник берут самоустанавливающийся двухрядный; в лучших моделях – трехъярусный, Фиг. Д на рис. выше. Такой позволяет валу ротора не только слегка изгибаться, но и немного смещаться из стороны в сторону или вверх-вниз.

Примечание: на разработку опорного подшипника для ВСУ типа EuroWind ушло около 30 лет.

Аварийный флюгер

Принцип его работы показывает Фиг. В. Ветер, усиливаясь, давит на лопату, пружина растягивается, ротор перекашивается, обороты его падают и в конце концов он становится параллельно потоку. Вроде бы все хорошо, но – гладко было на бумаге…

Попробуйте в ветреный день удержать за ручку параллельно ветру крышку от выварки или большой кастрюли. Только осторожно – вертлявая железяка может садануть по физиономbии так, что расквасит нос, рассечет губу, а то и выбьет глаз.

Плоский ветер бывает только в теоретических выкладках и, с достаточной для практики точностью, в аэродинамических трубах. Реально же ураган ветряки с ураганной лопатой корежит больше, чем вовсе беззащитные. Лучше все-таки менять исковерканные лопасти, чем делать заново все. В промышленных установках – другое дело. Там шаг лопастей, по каждой в отдельности, отслеживает и регулирует автоматика под управлением бортового компьютера. И делаются они из сверхпрочных композитов, а не из водопроводных труб.

Токосъемник

Это – регулярно обслуживаемый узел. Любой энергетик знает, что коллектор со щетками нужно чистить, смазывать, регулировать. А мачта – из водопроводной трубы. Не залезешь, раз в месяц-два придется весь ветряк валить на землю и потом опять поднимать. Сколько он протянет от такой «профилактики»?

Видео: лопастной ветрогенератор + солнечная панель для электроснабжения дачи

Мини и микро

Но с уменьшением размеров лопастника трудности падают по квадрату диаметра колеса. Изготовление горизонтальной лопастной ВСУ своими силами на мощность до 100 Вт уже возможно. Оптимальным будет 6-лопастный. При большем количестве лопастей диаметр ротора, рассчитанного на ту же мощность, будет меньше, но их окажется трудно прочно закрепить на ступице. Роторы о менее чем 6 лопастях можно не иметь в виду: 2-лопастнику на 100 Вт нужен ротор диаметром 6,34 м, а 4-лопастнику той же мощности – 4,5 м. Для 6-лопастного зависимость мощность – диаметр выражается следующим образом:

  • 10 Вт – 1,16 м.
  • 20 Вт – 1,64 м.
  • 30 Вт – 2 м.
  • 40 Вт – 2,32 м.
  • 50 Вт – 2,6 м.
  • 60 Вт – 2,84 м.
  • 70 Вт – 3,08 м.
  • 80 Вт – 3,28 м.
  • 90 Вт – 3,48 м.
  • 100 Вт – 3,68 м.
  • 300 Вт – 6,34 м.

Оптимальным будет рассчитывать на мощность 10-20 Вт. Во-первых, лопасть из пластика размахом более 0,8 м без дополнительных мер защиты не выдержит ветер более 20 м/с. Во-вторых, при размахе лопасти до тех же 0,8 м линейная скорость ее концов не превысит скорость ветра более чем втрое, и требования к профилировке с круткой снижаются на порядки; здесь уже вполне удовлетворительно будет работать «корытце» с сегментным профилем из трубы, поз. Б на рис. А 10-20 Вт обеспечат питание планшетки, подзарядку смартфона или засветят лампочку-экономку.

Далее, выбираем генератор. Отлично подойдет китайский моторчик – ступица колеса для электровелосипедов, поз. 1 на рис. Его мощность как мотора – 200-300 Вт, но в режиме генератора он даст примерно до 100 Вт. Но подойдет ли он нам по оборотам?

Показатель быстроходности z для 6 лопастей равен 3. Формула для расчета скорости вращения под нагрузкой – N = v/l*z*60, где N – частота вращения, 1/мин, v – скорость ветра, а l – длина окружности ротора. При размахе лопасти 0,8 м и ветре 5 м/с получаем 72 об/мин; при 20 м/с – 288 об/мин. Примерно с такой же скоростью вращается и велосипедное колесо, так что свои 10-20 Вт от генератора, способного дать 100, мы уж снимем. Можно ротор сажать прямо на его вал.

Но тут возникает следующая проблема: мы, потратив немало труда и денег, хотя бы на моторчик, получили… игрушку! Что такое 10-20, ну, 50 Вт? А лопастный ветряк, способный запитать хотя бы телевизор, дома не сделаешь. Нельзя ли купить готовый мини-ветрогенератор, и не обойдется ли он дешевле? Еще как можно, и еще как дешевле, см. поз. 4 и 5. Кроме того, он будет еще и мобильным. Поставил на пенек – и пользуйся.

Второй вариант – если где-то валяется шаговый двигатель от старого 5- или 8-дюймового дисковода, или от привода бумаги или каретки негодного струйного или матричного принтера. Он может работать как генератор, и приделать к нему карусельный ротор из консервных банок (поз. 6) проще, чем собирать конструкцию наподобие показанной на поз. 3.

В целом по «лопастникам» вывод однозначен: самодельные – скорее для того, чтобы помастерить всласть, но не для реальной долговременной энергоотдачи.

Видео: простейший ветрогенератор для освещения дачи

Парусники

Парусный ветрогенератор известен давно, но мягкие полотнища его лопастей (см. рис.) начали делать с появлением высокопрочных износостойких синтетических тканей и пленок. Многолопастные ветряки с жесткими парусами широко разошлись по миру как привод маломощных автоматических водокачек, но их техданные ниже даже чем у каруселей.

Однако мягкий парус как крыло ветряка, похоже, оказался не так-то прост. Дело не в ветроустойчивости (производители не ограничивают максимально допустимую скорость ветра): яхсменам-парусникам и так известно, что ветру разорвать полотнище бермудского паруса практически невозможно. Скорее шкот вырвет, или мачту сломает, или вся посудина сделает «поворот оверкиль». Дело в энергетике.

К сожалению, точных данных испытаний не удается найти. По отзывам пользователей удалось составить «синтетические» зависимости для установки ВЭУ-4.380/220.50 таганрогского производства с диаметром ветроколеса 5 м, массой ветроголовки 160 кг и частотой вращения до 40 1/мин; они представлены на рис.

Разумеется, ручательств за 100% достоверность быть не может, но и так видно, что плоско-механистической моделью тут и не пахнет. Никак не может 5-метровое колесо на плоском ветре в 3 м/с дать около 1 кВт, при 7 м/с выйти на плато по мощности и далее держать ее до жестокого шторма. Производители, кстати, заявляют, что номинальные 4 кВт можно получить и при 3 м/с, но при установке их силами по результатам исследований местной аэрологии.

Количественной теории также не обнаруживается; пояснения разработчиков маловразумительны. Однако, поскольку таганрогские ВЭУ народ покупает, и они работают, остается предположить, что заявленные коническая циркуляция и пропульсивный эффект – не фикция. Во всяком случае, возможны.

Тогда, выходит, ПЕРЕД ротором, по закону сохранения импульса, должен возникнуть тоже конический вихрь, но расширяющийся и медленный. И такая воронка будет сгонять ветер к ротору, его эффективная поверхность получится больше ометаемой, а КИЭВ – сверхединичным.

Пролить свет на этот вопрос могли бы натурные измерения поля давления перед ротором, хотя бы бытовым анероидом. Если оно окажется выше, чем с боков в стороне, то, действительно, парусные ВСУ работают, как жук летает.

Самодельный генератор

Из сказанного выше ясно, что самодельщикам лучше браться или за вертикалки, или за парусники. Но те и другие очень медленные, а передача на быстроходный генератор – лишняя работа, лишние затраты и потери. Можно ли сделать эффективный тихоходный электрогенератор самому?

Да, можно, на магнитах из ниобиевого сплава, т. наз. супермагнитах. Процесс изготовления основных деталей показан на рис. Катушки – каждая из 55 витков медного 1 мм провода в термостойкой высокопрочной эмалевой изоляции, ПЭММ, ПЭТВ и т.п. Высота обмоток – 9 мм.

Обратите внимание на пазы под шпонки в половинах ротора. Они должны быть расположены так, чтобы магниты (они приклеиваются к магнитопроводу эпоксидкой или акрилом) после сборки сошлись разноименными полюсами. «Блины» (магнитопроводы) должны быть изготовлены из магнитомягкого ферромагнетика; подойдет обычная конструкционная сталь. Толщина «блинов» – не менее 6 мм.

Вообще-то лучше купить магниты с осевым отверстием и притянуть их винтами; супермагниты притягиваются со страшной силой. По этой же причине на вал между «блинами» надевается цилиндрическая проставка высотой 12 мм.

Обмотки, составляющие секции статора, соединяются по схемам, также приведенным на рис. Спаянные концы не должны быть натянуты, но должны образовывать петли, иначе эпоксидка, которой будет залит статор, застывая, может порвать провода.

Заливают статор в изложнице до толщины 10 мм. Центрировать и балансировать не нужно, статор не вращается. Зазор между ротором и статором – по 1 мм с каждой стороны. Статор в корпусе генератора нужно надежно зафиксировать не только от смещения по оси, но и от проворачивания; сильное магнитное поле при токе в нагрузке будет тянуть его за собой.

Видео: генератор для ветряка своими руками

Вывод

И что же мы имеем напоследок? Интерес к «лопастникам» объясняется скорее их эффектным внешним видом, чем действительными эксплуатационными качествами в самодельном исполнении и на малых мощностях. Самодельная карусельная ВСУ даст «дежурную» мощность для зарядки автоаккумулятора или энергоснабжения небольшого дома.

А вот с парусными ВСУ стоит поэкспериментировать мастерам с творческой жилкой, особенно в мини-исполнении, с колесом 1-2 м диаметром. Если предположения разработчиков верны, то с такого можно будет снять, посредством описанного выше китайского движка-генератора, все его 200-300 Вт.

Андрей сказал(а):

Спасибо за вашу бесплатную консультацию…А цены “от фирм”не реально дороги,и я думаю,что мастеровые люди из глубинки смогут сделать генераторы подобные вашему.А аккамуляторы Li-po можно выписать из Китая,инверторы в Челябинске делают очень хорошие (с плавным синусом).А паруса,лопасти или роторы – это очередной повод для полёта мысли наших рукастых Русских мужиков.

Иван сказал(а):

вопрос:
Для ветряков с вертикальной осью(позиция 1) и варианта “Ленца” возможно добавить дополнительную деталь – крыльчатку,выставляющуюся по ветру, и закрывающую от него же бесполезную сторону(идущую в сторону ветра). То есть ветер будет не лопасть тормозить, а этот “экран”. Постановка по ветру “хвостом”, находящимся за самим ветряком ниже и выше лопостей(гребней). Читал статью и родилась идея.

Нажимая кнопку «Добавить комментарий», я соглашаюсь с сайта.

Использовать энергию ветра с целью получения электричества – идея, отнюдь, не новая. Существуют регионы, где именно это способ добычи считается наиболее выгодным и приоритетным – естественно, в этих местах постоянно дуют ветра. Ярким примером может послужить Дания, где на долю ветровой энергии приходится 25% от всего электричества, потребляемого в стране.

Сегодня мы расскажем вам, что такое ветрогенератор вертикального типа, каковы его основные особенности, преимущества и недостатки, а также поделимся информацией, как собрать такое устройство своими руками, используя лишь подручные материалы.

Преимущества вертикального ветрогенератора достаточно весомые:

  • Главной особенностью данного устройства является то, что для него абсолютно неважно направление ветра.
  • Он устанавливается на достаточно низкой высоте, что не требует наличия специальных приспособлений для обслуживания, а сам процесс является безопасным.
  • Вертикальные ветрогенераторы имеют только одну ось вращения без передаточных механизмов, а значит, в эксплуатации будут намного надежнее, чем горизонтальные аналоги.
  • Эти приборы имеют солидный уровень КПД, благодаря форме ротора и лопастей.

Совет! Небольшие модели бытового назначения приводятся в действие очень слабым порывом ветра – от 1,5 метра в секунду, что еще больше увеличивает КПД установки.

  • Генератор не издает никаких звуков, так что мешать жизни людей вокруг не будет. Более того прибор никак не влияет на экологию, не создавая выбросов в атмосферу.
  • Устройство будет служить долгие годы, нуждаясь лишь в периодической ревизии основных механических узлов (особенно важно следить за состоянием подшипников). Ремонт устройства также выполняется достаточно просто

Как работает и включается в сеть ветрогенератор

В основу работы синхрофазотрона… простите, ветрогенератора, положен принцип магнитной левитации. Суть его заключается в том, что во время вращения образуется подъемная и импульсная силы, благодаря которым ротор начинает вращаться, плюс сила фактического торможения.

В результате вращения ротора образуется магнитное поле, которое индуктирует ЭДС в обмотке якоря генератора, в результате чего появляется ток.

  • Конструкция является полностью механической и автономной, поэтому не требует в свою работу вмешательства человека. Естественно, сам генератор оснащается дополнительными устройствами, благодаря которым получаемая энергия делается подходящей для использования в домашних сетях.

  • Ни в коем случае нельзя подключать электроприборы напрямую к выводам генератора, так как это устройство в разных режимах работы будет выдавать ток разной силы и частоты.
  • После самого генератора в схему включается контроллер, который контролирует (простите за тавтологию), уровень заряда аккумулятора. На фото выше показано устройство такого типа. Как видим, на корпусе имеется 4 клеммы, к которым подключаются выходы самого генератора, аккумулятора и балласт.
  • Что есть балласт? Думаем, многие в курсе, что аккумуляторные батареи крайне не рекомендуется перезаряжать, иначе начинает закипать электролит, создается давление внутри, и устройство может под эффектный салют выйти из строя. Поэтому, как только напряжение на аккумуляторе поднимается до 14-15 вольт, что свидетельствует о его полной зарядке, питание прекращается.
  • Аккумулятор отключен, энергии идти больше некуда, ну, допустим, дома никого нет, и электричество никакие приборы не потребляют, а на улице поднялся хороший ветер, и генератор продолжает интенсивно вращаться. Что произойдет?

  • Если на ветрогенераторе не будет нагрузки, его вращение не будет испытывать никакого сопротивления. Лопасти раскручиваются слишком сильно, из-за чего возрастает ветровая нагрузка и возникает неприятный шум. В определенных ситуациях конструкция может попросту не выдержать и, помахав вам ручкой, улететь без обещания вернуться.
  • Следующий момент – это то, что напряжение на генераторе без нагрузки при таком интенсивном вращении может доходить до 60-80 вольт, при номинале в 12. Транзисторы контроллера в среднем рассчитаны на напряжение в 40 В — как понимаете, подобный скачок приведет к моментальному их выходу из строя.
  • Чтобы такого не происходило и используется балласт – запасная нагрузка, создаваемая резистором, лампами или тэном.

Совет! Если применить тэн, то энергия не будет уходить впустую – можно предусмотреть конструкцию, при которой, к примеру, будет нагреваться вода.

  • Потребляемая мощность балластом должна соответствовать максимальному показателю, который способен выдать ветрогенератор.
  • Если у приобретенного вами контроллера нет клемм для подключения балластной нагрузки, то значит, это устройство будет работать по иному принципу. Как только аккумулятор будет полностью заряжен, контроллер замкнет фазы ветрогенератора, который в результате этого остановит свое вращение. Блокировка будет держаться до тех пор, пока уровень напряжения в батарее не упадет до 13,5 вольт, после чего цикл повторится.
  • Данные устройства устанавливают только на маломощные генераторы.
  • Перед контроллером в цепи обязательно ставится диодный мост – простейшее устройство из четырех полупроводников, которое будет выпрямлять поступающий ток. Многие устройства имеют выпрямитель внутри корпуса, поэтому при подключении обязательно изучается инструкция.

  • Итак, далее в цепи идет аккумуляторная батарея. Подойдет, в принципе любая на 12 вольт, так что за покупкой можно отправиться в магазин автозапчастей.
  • Как вы понимаете, использование ветровых генераторов, вовсе не означает, что электрическая энергия будет бесплатной. Во-первых, учтите стоимость самого устройства и оборудования для него – если вы не радиотехник, то потратиться, однозначно придется. Во-вторых, любой аккумулятор имеет определенный ресурс работы – в среднем 4-5 лет при условиях интенсивной эксплуатации.
  • Аккумулятор хорошей емкости будет вам обходиться около 5-10 тысяч рублей (цена на 2018 год). То есть, даже если убрать затраты на установку и запуск оборудования, вам придется платить от 80 до 160 рублей в месяц, не считая затрат на возможные ремонты оборудования.
  • При этом регион, в котором вы живете должен быть действительно ветренным, чтобы все затраты окупались. В общем, решать о целесообразности подобного приобретения только вам, мы же лишь знакомим вас с фактами.

  • Если от ветрогенератора вы планируете запитывать бытовые электроприборы, работающие от стандартных 220 вольт, вам понадобится инвертор, который будет постоянный ток преобразовывать в переменный
  • Из дополнительного оборудования хотелось бы выделить АВР (автоматический переключатель источника питания). Данное устройство в автоматическом режиме будет выполнять переключение питания при выключении ветрогенератора на общественную сеть или аварийный источник питания.

Типы вертикальных ветрогенераторов

Внешний вид и характеристики вертикальных ветрогенераторов во многом зависят от конструктивного строения этих устройств. Давайте разберем основные.

Ортогональные системы

Тех характеристика вертикального ветрогенератора ортогонального типа подразумевает не очень высокий КПД при больших габаритах, при сравнении с горизонтально-осевыми устройствами, однако независимость от направления ветра делает его более приоритетным.

  • В основе конструкции данные генераторы имеют центральную ось вращения (вертикальную) и несколько плоских лопастей, расположенных ей параллельно.
  • Все лопасти удалены от центра вращения на определенное расстояние.
  • При таком устройстве приводной механизм может быть размещен на уровне земли, что существенно облегчает техническое обслуживание и ремонтные мероприятия.

Ветрогенератор - это механическое устройство, предназначенное для выработки (генерирования) электрического тока. Поток ветра вращает рабочее колесо, взаимодействуя с его лопастями. Вращение передается на генератор, который начинает вырабатывать электрический ток. Такова . На практике все намного сложнее, так как возникает масса трудностей технического и эксплуатационного характера, но в целом возможности этих устройств сильно недооценены.

Россия считается энергоизбыточной страной, имеющей большое количество мощных электростанций, но, тем не менее, имеются районы, где сетевого электричества нет до сих пор. Использование энергии ветра для выработки энергии для подобных районов является хорошей альтернативой, позволяющей решить вопрос если не полностью, то в достаточной степени.

Количество полученной энергии прямо пропорционально мощности генератора и скорости вращения ветряка, что позволяет в теории использовать несколько устройств для получения необходимого количества электроэнергии. Практика пока недостаточно иллюстрирует ситуацию, так как на сегодня для сбора статистических данных не имеется достаточного количества генераторов. Поэтому приходится пока довольствоваться расчетными данными, которые в большинстве случаев подтверждаются на практике.

Существуют две основные разновидности ветрогенераторов:

  • . Они считаются наиболее эффективными, имеют больший КПД и дают неплохие результаты при пользовании
  • . Эти устройства менее эффективны, но обладают рядом специфических качеств, делающих их не менее востребованными среди подобных агрегатов

Виды ветрогенераторов с вертикальной осью вращения

Вертикальный ветрогенератор - это устройство, ось вращения которого расположена перпендикулярно направлению потока ветра и ориентирована в вертикальном направлении. Продольные оси лопастей параллельны оси вращения.

Если горизонтальные генераторы по внешнему виду напоминают пропеллер, то вертикальные ближе к барабану центробежного вентилятора, установленному вертикально и оборудованному малым числом лопаток (обычно их 2 штуки, но бывают и другие варианты). Такое расположение позволяет лопастям одинаково реагировать на потоки ветра с любой стороны без необходимости ориентирования оси вращения на встречном направлении к движению воздуха.

Существуют различные виды вертикальных ветрогенераторов. Разница между ними заключается лишь в типе вращающейся части - ротора, поскольку конструкция неподвижного статора принципиальных изменений не имеет. Известны такие виды, как:

  • ортогональный ротор. Его лопасти расположены по касательной к окружности вращения и имеют сечение как у крыла самолета. Способен начинать вращаться даже при относительно слабом ветре, увеличивая скорость за счет разрежения воздуха над поверхностью лопастей и уплотнения под ней (возникновения подъемной силы). Не имеет высокой парусности лопастей, что позволяет стабилизировать скорость вращения и исключить резкие изменения динамики, способные вывести из строя подшипники
  • . Представляет собой две изогнутые в виде половинок трубы лопасти. При большой площади уравновешивания сил, воздействующих на лопасти, не происходит, так как поток, действующий на внутреннюю часть лопасти, отражается от ее изгиба и частично попадает в изгиб второй лопасти, усиливая ее вращение. Обратная сторона разбивает поток на равные части, одна из которых обтекает изгиб и попадает на рабочую часть, увеличивая вращающий момент, а другая уходит в сторону. Эффективность такого ротора невелика, всего 15%, но по сочетанию характеристик он вполне достоин внимания
  • ротор Дарье. Это один из вариантов ортогональной конструкции. Имеет вантовый вид лопастей, концы которых присоединены к валу вращения, а центральные части, плавно изгибаясь, отходят от вала таким образом, что при взгляде со стороны лопасти образуют своими очертаниями овал или круг. Ротор имеет малую мощность, высокий уровень шума и вибраций, что делает его требовательным к постоянному наблюдению и обслуживанию.
  • геликоидный ротор. Конструкция имеет лопасти сложной формы, закрученной вокруг вертикальной оси. Это позволяет стабилизировать скорость вращения и устранить шум, создаваемый лопастями при вращении. Равномерность работы делает конструкцию более удобной, обеспечивающей ровный результат при разных режимах вращения. Для самостоятельного изготовления этот вариант конструкции наиболее сложен, но, в целом, доступен.
  • многолопастной ротор. Имеет несколько лопастей, что позволяет получить ровное и мощное вращение ротора при относительно слабом ветровом давлении. Обычно используется несколько узких полос на некотором расстоянии от вала вращения, передающих поток с возрастанием скорости и плотности на второй ряд лопастей, расположенный внутри первого. Также существуют варианты с двумя уровнями (пара лопаток, а под ней - другая с разворотом на 90°. Все варианты конструкции имеют неплохие эксплуатационные характеристики, что позволяет считать такую конструкцию одной из наиболее перспективных.

Существуют конструкции, которые предусматривают защиту от уравновешивающего давления потока на обратную сторону крыла. Делается щит по форме части окружности, закрывающий от ветра участок с обратной стороной лопастей таким образом, что ветер воздействует только на рабочую сторону. Для наведения ротора на ветер, т.е. поворота системы при изменении направления потока, делается устройство типа флюгера, поворачивающее защиту в нужную сторону по ветру.

Эффективность всех этих видов примерно одинакова. Принципиальной разницы в характеристиках также не имеется, основные различия лежат в области уменьшения шума, снижения нагрузок на вал, выравнивания режимов вращения.

Преимущества и недостатки ветрогенераторов с вертикальной осью

Вертикальный ветрогенератор - конструкция, удачная для создания своими руками. При всем разнообразии вариантов исполнения, на многие из них до сих пор нет математической модели вращения, что не позволяет создать корректную методику расчета. При этом, такая ситуация способствует активному развитию моделирования всех разновидностей ветрогенераторов и отработке их технических параметров.

Основными преимуществами ветрогенераторов с вертикальной осью принято считать:

  • простота конструкции, возможность изготовления практически любого типа своими руками
  • стабильность, устойчивость режимов работы, вызванная способностью одинаково реагировать на потоки ветра любого направления
  • отсутствует нужда в механизме наведения оси вращения на поток, без чего не могут функционировать генераторы с горизонтальным вращением
  • для того, чтобы изготовить вертикальный ветрогенератор своими руками, требуются относительно малые затраты денег, времени и труда. Основная статья расходов - непосредственно генератор, а вращающиеся части могут быть изготовлены буквально из подручных средств

Недостатками вертикального ветрогенератора считаются:

  • эффективность работы ниже, чем у горизонтальных конструкций
  • при работе устройства издают шум, который сложно устранить, так как он происходит из-за контакта потока воздуха и материала лопасти
  • высокий уровень вибраций и резких изменений режимов вращения создают сильную нагрузку на подшипники, способствуя быстрому выходу подвижных деталей и узлов из строя
  • для создания вертикального генератора требуется большее количество материалов, чем для горизонтальных образцов

Место установки ветрогенератора

Для монтажа ветрогенератора потребуется открытая площадка, не имеющая вблизи препятствий, способных закрыть устройство от ветровых потоков. над уровнем грунта может быть относительно мала, около 3 метров. Примечательно, что с точки зрения эффективности контакта лопастей с ветром, подъем устройства на большую высоту мало влияет на рост производительности генератора, так как поднять ротор на значительную высоту нереально, а изменения в 2-3 метра никаких существенных выгод не приносят.

При этом, необходимо помнить о длине кабеля и его сопротивлении. Большая длина вызовет падение напряжения и потребует значительных расходов на дорогостоящий кабель, поэтому слишком большого удаления от дома делать не рекомендуется, так же, как и чрезмерно приближать ветряк. Вибрации и шум от вращающегося ротора будут очень докучать жителям дома, вызовут нарушения сна и потребуют перемены места установки устройства.

Как самостоятельно изготовить ветрогенератор вертикального типа

Самостоятельное изготовление ветрогенератора вполне возможно, хотя и не так просто, как может показаться на первый взгляд. Понадобится либо собрать весь комплект оборудования, что весьма сложно, либо некоторые его элементы приобрести, что довольно дорого. В состав комплекта могут входить:

  • ветрогенератор
  • инвертор
  • комплект аккумуляторов
  • провода, кабели, вспомогательное оборудование

Оптимальным вариантом станет частичное приобретение готового оборудования, частичное изготовление своими руками. Дело в том, что цены на узлы и элементы очень высоки, доступны не для всех. Кроме того, высокие единовременные вложения заставляют задуматься, нельзя ли эти средства реализовать более эффективным образом.

Система работает следующим образом:

  • ветряк вращается и передает момент на генератор
  • возникает электрический ток, который заряжает аккумулятор
  • аккумулятор присоединяется к инвертору, преобразующему постоянный ток в 220 В 50Гц переменного тока.

Сборку обычно начинают с генератора. Наиболее удачным вариантом является сборка 3-фазной конструкции на неодимовых магнитах, позволяющей вырабатывать соответствующий ток.

Вращающиеся части делаются на основе одной из систем, наиболее доступной для воссоздания своими руками. из отрезков труб, распиленных пополам металлических бочек или согнутого определенным образом листового металла.

Мачта сваривается на земле и устанавливается в вертикальное положение уже в готовом виде. Как вариант, делается из дерева сразу на месте установки генератора. Для прочной и надежной установки следует сделать для опор фундамент и закрепить мачту анкерами. При большой высоте ее следует дополнительно закрепить растяжками.

Все узлы и детали системы требуют подгонки друг к другу по мощности, настройки работоспособности. Заранее сказать, невозможно, так как слишком много неизвестных параметров не позволят вычислить характеристики системы. При этом, если изначально закладывать систему под определенную мощность, то на выходе всегда получаются довольно близкие значения. Основным требованием становится прочность и аккуратность изготовления узлов, чтобы работа генератора была достаточно стабильной и надежной.

Ветер обладает неимоверными энергетическими возможностями. Неиспользование его мощного потенциала надо смело признать неразумным расточительством. А ведь можно запросто соорудить вертикальный ветрогенератор своими руками и получать фактически бесплатную энергию для покрытия бытовых нужд. Это же вполне реально, согласны?

Представленная статья поможет детально разобраться в сложном техническом вопросе. Систематизированная, доступно изложенная информация в мельчайших подробностях освещает принцип действия популярных систем, перерабатывающих энергию воздушных масс в электричество.

Вне сомнений, вы увлечетесь идеей создания ветряка, специфика сборки которого описана в статье. Мы подробно рассмотрели разные виды вертикальных ветрогенераторов, затронули их различия, преимущества и недостатками. Текстовую часть материала отлично дополняют фото и видео-инструкции.

Современный вертикальный генератор – один из вариантов . Агрегат способен преобразовать порывы ветра в энергетический ресурс. Для корректной работы он не нуждается в дополнительных устройствах, определяющих направление ветра.

Ветряной генератор роторного типа очень легко изготовить своими руками. Конечно, полностью взять на себя обеспечение частного крупногабаритного коттеджа энергией он не сможет, но с освещением хозяйственных построек, садовых дорожек и придомовой территории справится на отлично

Прибор вертикального типа функционирует на низкой высоте. Для его обслуживания не нужны различные приспособления, обеспечивающие безопасное проведение высотных ремонтных и обслуживающих работ.

Минимум движущихся деталей делает ветряную установку более надежной и эксплуатационно устойчивой. Оптимальный профиль лопастей и оригинальной формы ротор обеспечивают агрегату высокий уровень КПД независимо от того, в каком направлении дует ветер в каждый отдельный момент.

Малые бытовые модели состоят из трех и более легких лопастей, моментально улавливают самый слабый порыв и начинают вращаться, как только сила ветра превышает 1,5 м/с. Благодаря этой способности их эффективность часто превышает КПД крупных установок, нуждающихся в более сильном ветре

Генератор работает абсолютно бесшумно, не мешает хозяевам и соседям, не создает вредных выбросов в атмосферу и надежно служит в течение многих лет, аккуратно поставляя энергию в жилые помещения.

Вертикальный генератор ветрового типа работает по принципу магнитной левитации. В процессе вращения турбин образуются импульсная и подъемная силы, а также сила фактического торможения. Первые две заставляют крутиться лопасти агрегата. Это действие активирует ротор и он создает магнитное поле, вырабатывающее электричество.

Ветряк, имеющий вертикальную ось вращения, по эффективности уступает своим горизонтальным аналогам. Зато не предъявляет претензий к территориальному расположению и полноценно работает практически в любом удобном для домовладельцев месте

Прибор функционирует полностью самостоятельно и не требует вмешательства хозяев в процесс.

Классификация вертикальных генераторов

Между ветроулавливающими устройствами вертикального типа есть некоторая конструкционная разница. Она не делает агрегаты лучше или хуже, а просто позволяет подобрать самый удобный вариант для выполнения конкретных задач в определенной местности.

#1: Особенности ортогональных систем

Конструкционно ортогональный ветряной генератор состоит из прочной оси вертикального вращения и нескольких параллельных лопастей, удаленных от центровой основы на определенное расстояние.

Прибор не нуждается в дополнительных направляющих механизмах и нормально работает, независимо от направления ветра. Вертикально расположенный главный вал дает возможность размещать приводное оборудование на уровне земли, что существенно облегчает эксплуатацию, ремонт и техническое обслуживание.

Опорные узлы ортогонального генератора имеют не очень высокий срок службы. Это обусловлено высокими динамическими нагрузками, которые на них оказывает в процессе работы ротор. Чтобы установка не вышла из строя раньше времени, все опорные части необходимо регулярно осматривать и своевременно менять поврежденные на новые

К минусам ортогональных приборов относятся слишком массивная лопастная система и низкая эффективность по сравнению с КПД горизонтально-осевых модулей.

#2: Генераторы с ротором Дарье

Ветряной генератор, оснащенный ротором Дарье, имеет вертикальную ось вращения и 2-3 плоские полосы-лопасти без характерного аэродинамического профиля, закрепленные у основания и на верхушке оси вращения.

Агрегат в своей работе не ориентируется на силу или направление ветра, имеет высокую скорость вращения и допускает расположение приводных устройств на земле, что облегчает и ускоряет процесс планового обслуживания и возможного ремонта.

Двухлопастные генераторные установки с ротором Дарье активируются только сильным порывом ветра. При равномерно набегающем потоке запуститься самостоятельно они не могут

Опорные и вращающиеся узлы прибора с ротором Дарье уязвимы к повышенным динамическим нагрузкам, а эффективность лопастной системы по многим параметрам уступает осевым горизонтальным установкам.

#3: Агрегаты с ротором Савониуса

Вертикальный ветряной прибор с ротором Савониуса имеет полуцилиндрическую лопастную систему и от аналогичных установок отличается высоким пусковым крутящим моментом и способностью эффективно работать при низкоскоростных ветрах.

Мощность предлагаемых на рынке вертикальных ветрогенераторов с ротором Савониуса не превышает 5 кВт. Приборы редко используют как самостоятельную рабочую единицу, а чаще всего применяют для создания более высокого пускового момента для роторных установок Дарье

В упрек вертикальному комплексу с ротором Савониуса ставят повышенную материалоемкость и более низкий КПД по сравнению с ветрогенераторами горизонтальноосевого типа. Именно поэтому выпуск высокомощного оборудования такого класса считают не целесообразным.

#4: Ветряк с многолопастным ротором и направляющей

Этот вид прибора – усовершенствованная версия классического ортогонального ветрогенератора. Роторный комплекс здесь состоит из лопастей, расположенных в два ряда.

Внешний лопастной ярус остается статичным и работает как направляющий аппарат. Он улавливает ветряной поток, захватывает его, сжимает и таким способом заметно увеличивает фактическую скорость ветра.

Внутренний ряд лопастей представляет собой подвижную структуру, на которую под определенным углом попадает воздухопоток от первой роторной установки.

КПД ветряного генератора, имеющего многолопастный ротор с направляющей системой, делает этот прибор особенно привлекательными для потребителей. Однако, стоимость такого оборудования довольно высока, и оно окупается несколько дольше, нежели аналогичные устройства более простой конфигурации

Специалисты называют этот тип прибора максимально эффективным в своем классе и подчеркивают, что специфическая конструкция позволяет ему работать даже при максимально низких скоростях ветра.

#5: Характеристика приборов с геликоидным ротором

Геликоидная ветряная установка или генератор Горлова – еще одна модификация традиционной ортогональной роторной системы. Лопасти модели закручены по дуге. Эта конструкционная особенность дает возможность быстро улавливать поток воздуха и плавно вращаться без рывков.

Такой принцип работы существенно снижает динамическую нагрузку на основание и подвижные узлы, тем самым увеличивая срок их службы.

Аппараты с ротором геликоидного типа очень надежны и легко выдерживают значительные эксплуатационные нагрузки. Однако во время работы такие ветряки создают выраженные шумовые эффекты и производят дополнительные звуковые волны, находящиеся в коротковолновой области звукового спектра

Закрученные роторные лопасти для геликоидного ветряка делают по очень прогрессивной, но сложной технологии. Из-за этого агрегаты имеют достаточно высокую стоимость и не пользуются широкой популярностью у частных потребителей.

#6: Характеристика вертикально-осевых роторов

Главное отличие вертикально-осевого генератора – это вертикально расположенные лопасти, по профилю напоминающие авиационное крыло, чья ось четко параллельна вертикальному валу. Конструкция чем-то напоминает ротор Дарье, но в производственных условиях изготовляется значительно быстрее и проще.

Генератор с вертикально-осевым ротором гораздо быстрее, чем аналогичные приборы этого класса, набирает рабочую скорость и начинает выдавать требуемый энергоресурс. Процесс сопровождается небольшим звуковым эффектом и не мешает ни владельцам установки, ни соседям

Ветряки с ротором вертикально-осевого типа отличаются надежностью и долговечностью, легко выдерживают значительные эксплуатационные нагрузки и не стоят слишком больших денег. Эти качества делают их актуальными для использования не только в промышленных, но и в бытовых целях.

Особенности выбора ветрогенераторов для частного дома и обзор лучших предложений представлены в .

Собственноручное изготовление ветряка

Создать ветрогенератор с вертикальной осью вращения в домашних условиях своими руками не слишком сложно. Достаточно приобрести обязательные составляющие детали, собрать их в правильном порядке и установить модуль на выбранное место. Как только появится минимальный ветерок, изделие заработает и начнет давать владельцам необходимую энергию.

Шаг 1: Заготовка комплектующих и материалов

Для изготовление ветряного вертикального генератора своими руками понадобятся такие комплектующие:

  • ротор – подвижная часть агрегата:
  • лопасти – детали, улавливающие ветряной поток;
  • осевая мачта – для крепления ротора и лопастей (может иметь форму длинного шеста, пирамиды или треноги);
  • статор – предназначается для размещения катушки с прочной медной проволокой;
  • аккумулятор – вместительная емкость для накопления полученного ресурса;
  • инвертор – устройство для преобразования постоянного тока в переменный;
  • контроллер – прибор, тормозящий генератор, в момент развития агрегатом фактической мощности, превышающей базовые показатели.

Для изготовления лопастей подойдет легкий качественный листовой пластик с хорошим показателем упругости. Другие виды материалов слишком подвержены различным повреждениям и деформации и просто не справятся со столь высокой динамической нагрузкой.

Изготавливая прибор самостоятельно, следует помнить, что вертикальные ветряки, сделанные своими руками, серьезно уступают в мощности заводским образцам. Поэтому, чтобы в будущем не разочароваться в созданной конструкции, лучше сразу сделать ее по параметрам, в 2 раза превышающим необходимые

Маленькие лопасти можно сделать из ПВХ средней плотности, а для больших, широких деталей потребуется максимально прочный материал, способный выдержать сильный ветер, дующий со скоростью 15 м/с и выше в течение длительного времени.

Шаг 2: Предварительная подготовка элементов

Выводы и полезное видео по теме

Видео №1 продемонстрирует, как сделать своими руками в домашних условиях вертикальный генератор ветряного типа с роторной системой Дарье. В ролике наглядно представлены особенности и любопытные нюансы процесса сборки. Есть определение максимальной мощности изготовленного агрегата:

Как работает вертикальный ветряной генератор и в каком объеме он выдает энергоресурс, покажет видео №2. В нем дан подробный обзор модуля и описание работы по корректному проведению замеров фактической мощности и прочих параметров:

В видео № 3 представлено тестирование самодельного ветряного генератора вертикального типа. На что способен прибор, изготовленный своими руками из подручных материалов:

Такой современный и практичный источник альтернативной энергии, как вертикальные ветряки несложно собрать своими руками. При надлежащем опыте хозяйственных работ можно изготовить каждую деталь, а потом соединить все компоненты в единую, целостную конструкцию.

Если усложнять задачу не хочется, вполне уместно приобрести уже готовые компоненты и в домашних условиях, без спешки и суеты, смонтировать надежный ветряной агрегат, способный обеспечить бесперебойные поставки электричества в жилое помещение.

Когда же в своих силах нет стопроцентной уверенности, лучше поручить работу профессионалам. Они сделают все очень быстро и в полном соответствии с базовыми эксплуатационными требованиями.

Имеете опыт сооружения и эксплуатации ветрогенератора? Пожалуйста, поделитесь информацией с нашими читателями, предложите свой способ сборки агрегата. Оставлять комментарии и добавлять фотографии самоделок можно в форме, расположенной ниже.