Второй закон термодинамики. Энтропия

  • Дата: 16.10.2019

Второй закон термодинамики, как и первый, является постулатом, обоснованным многовековым опытом человечества. Открытию этого закона способствовало изучение тепловых машин. Французский ученый С. Карно первым показал (1824 г.), что любая тепловая машина должна содержать помимо источника теплоты (нагревателя) и рабочего тела (пар, идеальный газ и др.), совершающего термодинамический цикл, также и холодильник, имеющий температуру обязательно более низкую, чем температура нагревателя.

Коэффициент полезного действия η такой тепловой машины, работающей по обратимому циклу (циклу Карно ), не зависит от природы рабочего тела, совершающего этот цикл, а определяется только температурами нагревателя Т 1 и холодильника Т 2:

где Q 1 – количество теплоты, сообщенное рабочему телу при температуре Т 1 от нагревателя; Q 2 – количество теплоты, отданное рабочим телом при температуре Т 2 холодильнику.

Второй закон термодинамики представляет собой обобщение вывода Карно на произвольные термодинамические процессы, протекающие в природе. Известно несколько формулировок этого закона.

Клаузиус (1850 г.) сформулировалвторой закон термодинамики так: невозможен процесс, при котором теплота переходила бы самопроизвольно от тел более холодных к телам более горячим.

У. Томсон (Кельвин) (1851 г.) предложил следующую формулировку: невозможно построить периодически действующую машину, вся деятельность которой сводилась бы к совершению механической работы и соответствующему охлаждению резервуара.

Постулат Томсона может быть сформулирован и так: вечный двигатель второго рода невозможен. Вечным двигателем второго рода называют устройство, которое без компенсации полностью превращало бы периодически теплоту какого-либо тела в работу (В.Оствальд). Под компенсацией понимают изменение состояния рабочего тела или отдачу части теплоты рабочим телом другим телам и изменение термодинамического состояния этих тел при круговом процессе превращения теплоты в работу.

Второй закон термодинамики устанавливает, что без компенсации в круговом процессе ни один джоуль теплоты нельзя превратить в работу. Работа же превращается в теплоту полностью без всякой компенсации . Последнее связано, как отмечалось ранее, с самопроизвольностью процесса рассеивания (обесценивания) энергии.

Второй закон термодинамики вводит функцию состояния системы, которая количественно характеризует процесс рассеивания энергии . В этом смысле приведенные формулировки второго закона термодинамики равноценны, ибо из них следует существование функции состояния системы – энтропии.


В настоящее время второй закон термодинамики формулируется следующим образом: существует аддитивная функция состояния системы S – энтропия, которая следующим образом связана с теплотой, поступающей в систему, и температурой системы :



Для обратимых процессов; (3.2)

Для необратимых процессов. (3.3)

Таким образом, при обратимых процессах в адиабатически изолированной системе ее энтропия не изменяется (dS = 0), а при необратимых процессах увеличивается (dS > 0).

В отличие от внутренней энергии значение энтропии изолированной системы зависит от характера происходящих в ней процессов: в ходе релаксации энтропия изолированной системы должна возрастать, достигая максимального значения при равновесии.

В общем виде второй закон термодинамики для изолированной системы записывается так:

Энтропия изолированной системы или увеличивается, если в ней протекают самопроизвольные необратимые процессы, или остается постоянной. Поэтому второй закон термодинамики определяют также как закон о неубывании энтропии в изолированных системах .

Таким образом, второй закон термодинамики дает критерий самопроизвольности процессов в изолированной системе . Спонтанно в такой системе могут протекать только процессы, сопровождающиеся увеличением энтропии. Самопроизвольные процессы заканчиваются с установлением равновесия в системе. Значит, в состоянии равновесия энтропия изолированной системы максимальна. В соответствии с этим критерием равновесия в изолированной системе будет

Если в процессе принимает участие неизолированная система , то для оценки необратимости (самопроизвольности) процесса необходимо знать изменение энтропии системы dS 1 и изменение энтропии окружающей среды dS 2 . Если принять, что система и окружающая среда (их часто называют «вселенной») образуют изолированную систему , то условием необратимости процесса будет

то есть процесс будет необратим, если общее изменение энтропии системы и окружающей среды будет больше нуля .

Окружающая среда – огромный резервуар; eе объем и температура не изменяются при теплообмене с системой . Поэтому можно для окружающей среды приравнять δQ = dU и не важно, обратимо или необратимо происходит переход теплоты, так как и δQ обр, и δQ необр точно равны dU окружающей среды. Таким образом, изменение энтропии окружающей среды всегда равно .

Энтропия. Второй закон термодинамики

Самопроизвольные процессы. В природе физические и химические превращения совершаются в определенном направлении. Так, два тела, находящиеся при разных температурах, вступают в контакт, тепловая энергия передается от более теплого тела к более холодному до тех пор, пока температура этих двух тел не сравняется. При погружении цинковой пластинки в соляную кислоту образуется ZnCl 2 и H 2 . Все эти превращения являются самопроизвольными (спонтанными ). Самопроизвольный процесс не может протекать в обратном направлении так же самопроизвольно, как в прямом.

В химии важно знать критерии, позволяющие предвидеть, может ли химическая реакция происходить самопроизвольно, и если может, то уметь определить количества образовавшихся продуктов. Первый закон термодинамики такого критерия не дает. Тепловой эффект реакции не определяет направления процесса. Самопроизвольно могут протекать как экзотермические, так и эндотермические реакции. Так, например, самопроизвольно идет процесс растворения нитрата аммония NH 4 NO 3 (к) в воде, хотя тепловой эффект этого процесса положителен: > 0 (процесс эндотермический); тоже самое можно сказать и о растворении гипосульфита натрия в воде. А в другом примере невозможно осуществить при Т = 298 К и p = 101 кПа (1 атм) синтез н. гептана C 7 H 16 (ж) , несмотря на то, что стандартная теплота его образования отрицательна: < 0 (процесс экзотермический).

Таким образом, разность энтальпий реакции еще не определяет возможности ее протекания в данных конкретных условиях.

Второй закон термодинамики. Критерий самопроизвольного протекания процесса в изолированных системах дает второй закон термодинамики.

Второй закон термодинамики дает возможность разделить все допускаемые первым законом процессы на самопроизвольные и не самопроизвольные.

Второй закон термодинамики является постулатом, обоснованным большим опытом, накопленным человечеством. Он выражается разными эквивалентными формулировками:

1. Теплота не может переходить сама собой от менее нагретого тела к более нагретому - постулат Клаузиуса (1850 г). Утверждается, что процесс теплопроводности необратим.

2. Быстро или медленно всякая система стремится к состоянию истинного равновесия.

3. Невозможен периодический процесс, единственным результатом которого является превращение теплоты в работу - формулировка Кельвина - Планк.

4. Теплота может переходить в работу только при наличии разности температур и не целиком, а с определенным термическим коэффициентом полезного действия:

где η - термический коэффициент полезного действия; A – работа, полученная системой за счет перехода тепла от тела с высокой температурой (T 1 ) к телу с низкой температурой (T 2 ); Q 1 – теплота, взятая у тела нагретого с температурой T 1 ; Q 2 – теплота, отданная холодному телу с температурой T 2 . Т.е. любые процессы протекают под действием разности потенциалов, каковой для тепловых процессов является разность температур, для электрических разность потенциалов, для механических - разность высот и т.д. Общим является сравнительно низкий коэффициент полезного действия. Значение к. п. д. обращается в единицу, если T 2 → 0 , но абсолютный нуль недостижим (третье начало термодинамики), следовательно, всю энергию нагретого тела при T 1 в работу превратить нельзя. Т.е. при совершении работы часть общей энергии системы остается неиспользованной.

Понятие об энтропии. Исследуя выражение к.п.д. тепловой машины Клаузиус ввел новую термодинамическую функцию, которую назвал энтропией – S .

Работа идеальной тепловой машины (цикл Карно) подробно рассматривается в курсе физики.

Из математического выражения второго закона термодинамики следует:

или

В дифференциальной форме:

Суммируя изменения по всему циклу тепловой машины, получаем выражение где dQ – приращение тепла, T – соответствующая температура; - интеграл по замкнутому контуру.

Подинтегральное выражение Клаузиус принял за приращение новой функции S – энтропии:

или

Энтропия представляет собой функцию параметров состояния системы (p, V, T) и может оценить направление процесса в системе, стремящейся к равновесию, т.к. для равновесного процесса ее изменение равно нулю; или .

В случае необратимого превращения, т.е. спонтанного процесса, идущего при постоянной температуре, имеем

Если протекает процесс самопроизвольно, то изменение энтропии положительно:

Для изолированных систем процессы, для которых изменение энтропии < 0 , запрещены.

Если в качестве изолированной системы выбрать вселенную, то второе начало термодинамики можно сформулировать следующим образом:

Существует функция S, называемая энтропией, которая является такой функцией состояния, что

В случае обратимого процесса энтропия вселенной постоянна, а в случае необратимого процесса возрастает. Энтропия вселенной не может уменьшаться”.

Статистическая интерпретация энтропии. Для характеристики состояния некоторой массы вещества, являющейся совокупностью очень большого числа молекул можно указать параметры состояния системы и таким образом охарактеризовать макросостояние системы; но можно указать мгновенные координаты каждой молекулы (x i , y i , z i) и скорости перемещения по всем трем направлениям Vx i , Vy i , Vz i , т.е. охарактеризовать микросостояние системы. Каждому макросостоянию отвечает огромное число микросостояний. Число микросостояний, соответствующее макроскопическому состоянию определяется точными величинами параметров состояния и обозначается через W - термодинамическая вероятность состояния системы.

Термодинамическая вероятность состояния системы, состоящей всего из 10 молекул газа примерно 1000, а ведь только в 1 см 3 газа содержится 2,7 ∙ 10 19 молекул (н.у.). Поэтому в термодинамике используют не величину W , а ее логарифм lnW . Последнему можно придать размерность (Дж/К) , умножив на константу Больцмана К :

W , где =1, 38 · 10 -23 Дж/К,

где N A – число Авогадро

Величину S называют энтропией системы. Энтропия – термодинамическая функция состояния системы.

Если изолированная система находится в макроскопическом состоянии 1 , соответствующем W 1 микроскопических состояний и если она может перейти в макроскопическое состояние 2 , число микроскопических состояний которого W 2 , то система будет иметь тенденцию перейти в состояние 2 при условии, что W 2 > W 1

Система спонтанно стремится к состоянию, которому в микроскопическом масштабе соответствует наибольшее число возможностей реализации.

Например, при расширении идеального газа в пустоту конечное состояние (с большим объемом по сравнению с начальным состоянием) включает гораздо большее число микросостояний просто потому, что молекулы могут принимать большее число положений в пространстве.

Когда в изолированной системе происходит самопроизвольный процесс, число микроскопических состояний W возрастает; тоже самое можно сказать об энтропии системы. При возрастании числа микроскопических состояний W , связанных с макроскопическим состоянием системы, энтропия увеличивается.

Например, рассмотрим термодинамическое состояние 1 моль воды (18 г H 2 O ) при стандартных условиях. Пусть W (ж) - термодинамическая вероятность состояния этой системы. При понижении температуры до 0 ºС вода замерзает, превращается в лед; при этом молекулы воды как бы закрепляются в узлах кристаллической решетки и термодинамическая вероятность состояния системы уменьшается; W (к) < W (ж). Следовательно, падает и энтропия системы: (к) < (ж). Наоборот при повышении температуры до 100º С вода закипает и превращается в пар; при этом термодинамическая вероятность состояния системы увеличивается: W (г) > W (ж) , следовательно, растет и энтропия системы:

(г) > (ж).

Энтропия, таким образом, является мерой неупорядоченности состояния системы. Действительно, единственному микроскопическому состоянию (W = 1 ) будет соответствовать полная упорядоченность и нулевая энтропия, т.е. известны положение, скорость, энергия каждой частицы, и все эти микроскопические характеристики будут оставаться постоянными во времени.

Второй закон термодинамики можно сформулировать следующим образом:

Изолированная система стремится достигнуть наиболее вероятного состояния, т.е. макроскопического состояния, соответствующего наибольшему числу микроскопических состояний.

В изолированных системах самопроизвольно идут только те процессы, которые сопровождаются ростом энтропии системы: Δ S > 0 (Δ S = S 2 – S 1).

Энтропия чистых веществ, существующих в виде идеальных кристаллов при температуре абсолютного нуля равна нулю. Это значит, что при абсолютном нуле достигается полная упорядоченность.

Один из основных законов физики, закон о неубывания энтропии в изолированной системе.
Для системы с постоянной температурой существует определенная функция состояния S - энтропия, которая определяется таким образом, что
1. Адиабатический переход из равновесного состояния A в равновесное состояние B возможен лишь тогда, когда

2. Прирост энтропии в медленном квазистатического процессе равно

Где T - температура.
Приведенное формулировка очень формаличне. Существует очень много альтернативных формулировок второго закона термодинамики. Например, Планк предложил следующую формулировку:
Невозможно построить машину, которая бы работала циклично, охлаждала бы источник тепла или поднимала вверх грузы, не вызывая при этом никаких изменений в природе.

Константин Каратеодори дал аксиоматически строгое формулировки
Вблизи состояния 1 существуют такие состояния 2, адиабатические переходы от состояния 1 до состояния 2 невозможны.

Больцман сформулировал второй закон термодинамики с точки зрения статистической физики:
Природа стремится перейти из состояний с меньшей вероятностью реализации в состояния с большей вероятностью реализации.

Распространены такие формулировки.
Неможливо побудувати вічний двигун другого роду .

Невозможно передать тепло от холодного тела к горячему, не затратив при этом энергию.

Каждая система стремится перейти от порядка к беспорядка.

Второй закон термодинамики был сформульваних в середине 19-го века, в те времена, когда создавалась теоретическая основа для конструирования и построения тепловых машин. Опыты Майера и Джоуля установили эквивалентность между тепловой и механической энергиями (первый закон термодинамики). Возник вопрос об эффективности тепловых машин. Экспериментальные исследования свидетельствовали о том, что часть тепла обязательно теряется при работе любой машины.
В 1850-х, 1860-х годах Клаузиус в ряде публикаций разработал понятие энтропии. В 1865 году он наконец выбрал для нового понятия имя. Эти публикации доказали также, что тепло невозможно полностью преобразовать в полезную работу, сформулировав таким образом второй закон термодинамики.
Статистическую интерпретацию второму закону термодинамики дал Больцман, введя новое определение для энтропии, которое базировалось на микроскопических атомистических представлениях.
Статистическая физика вводит новое определение энтропии, на первый взгляд очень отличное от определения термодинамики. Оно задается формулой Больцмана:

Где? - количество микроскопических состояний, соответствующих данному макроскопическому состояния, k B - постоянная Больцмана.
Из статистического определения энтропии очевидно, что рост энтропии соответствует переходу к такому макроскопического состояния, которое характеризуется наибольшим значением микроскопических состояний.
Если исходное состояние термодинамической системы неравновесное, то со временем она переходит к равновесному состоянию, увеличивая свою энтропию. Этот процесс протекает только в одну сторону. Обратный процесс - переход от равновесного состояния к начальному неравновесного, не реализуется. То есть, течение времени получает направление.
Законы физики, описывающие микроскопический мир, инвариантные относительно замены t на-t. Данное утверждение справедливо как в отношении законов классической механики, так и законов квантовой механики. В микроскопическом мире действуют консервативные силы, нет трения, которое является диссипацией энергии, т.е. преобразованием других видов энергии в энергию теплового движения, а это в свою очередь связано с законом неубывания энтропии.
Представим себе, например, газ в резервуаре, помещенном в больший резервуар. Если открыть клапан меньшего резервуара, то газ через некоторое время заполнит больший резервуар таким образом, что его плотность выровняется. Согласно законам микроскопического мира, существует также и обратный процесс, когда газ из большего резервуара соберется в меньшую емкость. Но в макроскопическом мире такое никогда не реализуется.
Если энтропия каждой изолированной системе только увеличивается со временем, а Вселенная является изолированной системой, то когда-нибудь энтропия достигнет максимума, после чего любые изменения в нем станут невозможными.
Такие соображения, которые появились после установки второго закона термодинамики, получившие название тепловой смерти. Эта гипотеза широко дискутировалась в 19-ом столетии.
Каждый процесс в мире приводит к рассеянию части энергии и перехода ее в тепло, ко все большему беспорядка. Конечно, наша Вселенная еще достаточно молод. Термоядерные процессы в звездах приводят к устойчивому потока энергии на Землю, например. Земля есть и еще долго будет оставаться открытой системой, которая получает энергию из различных источников: от Солнца, от процессов радиоактивного распада в ядре, т. В открытых системах, энтропия может уменьшаться, что приводит к появлению разнообразных благоустроенных стуктур.



Первый закон термодинамики представляет собой закон сохранения энергии применительно к термодинамическим процессам: энергия не исчезает в никуда и не возникает из ничего, а лишь переходит из одного вида в другой в эквивалентных количествах. Примером может послужить переход теплоты (тепловой энергии) в механическую энергию, и наоборот.

Если к М кг газа, занимающего объем V (м 3) при температуре Т подвести при постоянном давлении некоторое количество теплоты dQ , то в результате этого температура газа повысится на dT , а объем – на dV . Повышение температуры связано с увеличением кинетической энергии движения молекул dK .
Увеличение объема сопровождается увеличением расстояния между молекулами и, как следствие, уменьшением потенциальной энергии dH взаимодействия между ними. Кроме того, увеличив объем, газ совершает работу dA по преодолению внешних сил.
Если, кроме указанных, никаких иных процессов в рабочем теле не происходит, то на основании закона сохранения энергии можно записать:

dQ = dK + dH + dA .

Сумма dK + dH представляет собой изменение внутренней энергии dU молекул системы в результате подвода теплоты.
Тогда формулу сохранения энергии для термодинамического процесса можно записать в виде:

dQ = dU + dA или dQ = dU + pdV .

Это уравнение представляет собой математическое выражение первого закона термодинамики : количество теплоты dQ , подводимое к системе газа, затрачивается на изменение ее внутренней энергии dU и совершение внешней работы dA .

Условно считают, что при dQ > 0 теплота сообщается рабочему телу, а при dQ < 0 теплота отнимается от тела. При dA > 0 система совершает работу (газ расширяется) , а при dA < 0 работа совершается над системой (газ сжимается) .

Для идеального газа, между молекулами которого нет взаимодействия, изменение внутренней энергии dU полностью определяется изменением кинетической энергии движения (т. е. увеличением скорости молекул) , а изменение объема характеризует работу газа по преодолению внешних сил.

Первый закон термодинамики имеет еще одну формулировку: энергия изолированной термодинамической системы остается неизменной независимо от того, какие процессы в ней протекают .
Невозможно построить вечный двигатель первого рода, т. е. периодически действующую машину, которая совершала бы работу без затраты энергии.



Второй закон термодинамики

Первый закон термодинамики описывает количественные соотношения между параметрами термодинамической системы, имеющими место в процессах преобразования тепловой энергии в механическую и наоборот, но не устанавливает условия, при которых эти процессы возможны. Эти условия, необходимые для преобразования одного вида энергии в другой, раскрывает второй закон термодинамики.

Существует несколько формулировок этого закона, и каждая из них имеет одинаковое смысловое содержание. Здесь приведены наиболее часто упоминающиеся формулировки второго закона термодинамики.

1. Для превращения теплоты в механическую работу необходимо иметь источник теплоты и холодильник, температура которого ниже температуры источника, т. е. необходим температурный перепад.

2. Нельзя осуществить тепловой двигатель, единственным результатом действия которого было бы превращение теплоты какого-либо тела в работу без того, чтобы часть теплоты не передавалась другим телам.
Из этой формулировки можно сделать вывод, что невозможно построить вечный двигатель, совершающий работу благодаря лишь одному источнику теплоты, поскольку любой, даже самый колоссальный источник теплоты в виде материального тела не способен отдать тепловой энергии больше, чем ему позволяет энтальпия (часть полной энергии тела, которую можно превратить в теплоту, охладив тело до температуры абсолютного нуля) .

3. Теплота не может сама по себе переходить от менее нагретого тела к более нагретому без затраты внешней работы.

Как видите, второй закон термодинамики не имеет в своей основе формулярнго содержания, а лишь описывает условия, при которых возможны те или иные термодинамические явления и процессы, подтверждая, по сути, общий закон сохранения энергии.

Закономерность переноса тепла от одного объекта к другому рассматривается в утверждении о теплообмене. Весь процесс заключается во внутреннем обмене энергии между объектами, которая называется теплотой.

Правильный процесс направлен только на получение равного состояния, будь оно термическое, механическое или какое-либо ещё. Это действие и содержится во втором законе термодинамики, который имеет совсем немаленькое значение для тепловых машин. Данный закон говорит о том, что тепло может само передвигаться исключительно от объекта с большой температурой к объекту наименьшей температурой. Что бы осуществить обратный цикл, будет затрачиваться некоторая работа. Из чего можно получить заключение второго закона термодинамики: Это действие во время которого теплота сама по себе передвигается от объекта с меньшей теплотой к объекту с наибольшей теплотой не может существовать.

Заметка: Вы хотите обновить свои подоконники, но не знаете в какую компанию обратиться? Попробуйте подоконник меллер купить (http://hoffen.ru/podokonniki-moeller/), ценой и качеством Вы останетесь довольны!

В свое время второй закон термодинамики дает оценку условиям в которых тепло сможет, на сколько хочет обращаться в работу. Любое разомкнутое термодинамическое действие во время нарастания объема, будет происходить работа со знаком плюс.

Формула второго закона термодинамики

В которой L- будет итоговой работой, v1 и v2- собственной изначальный и итоговый объем удельный.
Так как действие расширения бесконечным быть не может, соответственно, и обращение тепла в работу будет этим ограничиваться. Непрерывным это действие будет в случае закрытого кругового движения.

Любое действие происходящее в цикле, происходит с подводом либо отводом тепла dQ, с сопровождением затраты либо совершения работ, упадком или возрастанием энергии внутри тела, а обязательное условие dQ=dU+dL , dg=du+d1 должно выполняться. Ведь оно доказывает что без тепла (dg=0) все действия будут происходить благодаря внутренней энергии системы, а ввод тепла в систему можно определить термодинамикой.

Интеграция в замкнутом контуре:

в которой Qц, Lц - будет теплотой превращенной в работу, L1- L2 - работой совершенной данным телом. Q1 подведенная теплота, Q2- отведенная теплота. А значит, Lц= Qц= Q1-Q2
Тепло можно подвести к телу Q1 только при наличии более горячего тела, а отвод Q2 только при наличии более холодного тела. В случае цикличности процесса понадобиться два источника с разной температурой.