Звуковое поле и его физические характеристики. Параметры, характеризующие звуковое поле Звуковое поле и его характеристики

  • Дата: 16.08.2020

Лекция 6 ЗАЩИТА ОТ ШУМА

Среди основных чувств человека слух и зрение играют важнейшую роль - позволяют человеку владеть звуковыми и зрительными информационными полями.

Даже беглый анализ системы человек – машина – окружающая среда дает основание считать одной из приоритетнейших проблем взаимодействия человека с окружающей средой, особенно на локальном уровне (цех, участок), проблему шумового загрязнения среды.

Длительное воздействие шума может привести к ухудшению слуха, а в отдельных случаях – к глухоте. Шумовое загрязнение среды на рабочем месте неблагоприятно воздействует на работающих: снижается внимание, увеличивается расход энергии при одинаковой физической нагрузке, замедляется скорость психических реакций и т.п. В результате снижается производительность труда и качество выполняемой работы.

Знание физических закономерностей процесса излучения и распространения шума позволит принимать решения, направленные на снижение его негативного воздействия на человека.

Звук. Основные характеристики звукового поля. Распространение звука

Понятие звук , как правило, ассоциируется со слуховыми ощущениями человека, обладающего нормальным слухом. Слуховые ощущения вызываются колебаниями упругой среды, которые представляют собой механические колебания, распространяющиеся в газообразной, жидкой или твердой среде и воздействующие на органы слуха человека. При этом колебания среды воспринимаются как звук только в определенной области частот (16 Гц - 20 кГц) и при звуковых давлениях, превышающих порог слышимости человека.



Частоты колебаний среды, лежащие ниже и выше диапазона слышимости, называются соответственно инфразвуковыми и ультразвуковыми . Они не имеют отношения к слуховым ощущениям человека и воспринимаются как физические воздействия среды.

Звуковые колебания частиц упругой среды имеют сложный характер и могут быть представлены в виде функции времени a = a(t) (рис. 1, а ).

Рис. 1. Колебания частиц воздуха.

Простейший процесс описывается синусоидой (рис. 1, б )

,

где a max - амплитуда колебаний;

w = 2 p f - угловая частота;

f - частота колебаний.

Гармонические колебания с амплитудой a max и частотой f называются тоном.

В зависимости от способа возбуждения колебаний различают:

Плоскую звуковую волну, создаваемую плоской колеблющейся поверхностью;

Цилиндрическую звуковую волну, создаваемую радиально колеблющейся боковой поверхностью цилиндра;

Сферическую звуковую волну, создаваемую точечным источником колебаний типа пульсирующий шар.

Основными параметрами, характеризующими звуковую волну, являются:

Звуковое давление p зв, Па;

Интенсивность звука I , Вт/м 2 .

Длина звуковой волны l , м;

Скорость распространения волны с, м/с;

Частота колебаний f , Гц.

Если в сплошной среде возбудить колебания, то они расходятся во все стороны. Наглядным примером являются колебания волн на воде. С физической точки зрения распространение колебаний состоит в передаче импульса движения от одной молекулы к другой. Благодаря упругим межмолекулярным связям движение каждой из них повторяет движение предыдущей. Передача импульса требует определенной затраты времени, в результате чего движение молекул в точках наблюдения происходит с запаздыванием по отношению к движению молекул в зоне возбуждения колебаний. Таким образом, колебания распространяются с определенной скоростью. Скорость распространения звуковой волны с - это физическое свойство среды.

Звуковые колебания в воздухе приводят к его сжатию и разрежению. В областях сжатия давление воздуха возрастает, а в областях разрежения понижается. Разность между давлением, существующем в возмущенной среде p ср в данный момент, и атмосферным давлением p атм, называется звуковым давлением (рис.2). В акустике этот параметр является основным, через который определяются все остальные.

p зв = p ср - p атм.

Рис. 2. Звуковое давление

Среда, в которой распространяется звук, обладает удельным акустическим сопротивлением Z A , которое измеряется в Па*с/м (или в кг/(м 2 *с) и представляет собой отношение звукового давления p зв к колебательной скорости частиц среды u :

z A = p зв /u = r ,

где с - скорость звука, м; r - плотность среды, кг/м 3 .

Для различных сред значения Z A различны.

Звуковая волна является носителем энергии в направлении своего движения. Количество энергии, переносимой звуковой волной за одну секунду через сечение площадью 1 м 2 , перпендикулярное направлению движения, называется интенсивностью звука . Интенсивность звука определяется отношением звукового давления к акустическому сопротивлению среды Вт/м 2:

Для сферической волны от источника звука с мощностью W , Вт интенсивность звука на поверхности сферы радиуса r равна:

I = W / (4p r 2),

то есть интенсивность сферической волны убывает с увеличением расстояния от источника звука. В случае плоской волны интенсивность звука не зависит от расстояния.

6.1.1 . Акустическое поле и его характеристики

Поверхность тела, совершающая колебания, является излучателем (источником) звуковой энергии, который создает акустическое поле.

Акустическим полем называют область упругой среды, которая является средством передачи акустических волн. Акустическое поле характеризуется:

- звуковым давлением p зв, Па;

- акустическим сопротивлением Z A , Па*с/м.

Энергетическими характеристиками акустического поля являются:

- интенсивность I , Вт/м 2 ;

- мощность звука W, Вт - количество энергии, проходящей за единицу времени через охватывающую источник звука поверхность.

Важную роль при формировании акустического поля играет характеристика направленности звукоизлучения Ф , т.е. угловое пространственное распределение образующегося вокруг источника звукового давления.

Все перечисленные величины взаимосвязаны и зависят от свойств среды, в которой распространяется звук. Если акустическое поле не ограничено поверхностью и распространяется практически до бесконечности, то такое поле называютсвободным акустическим полем. В ограниченном пространстве (например, в закрытом помещении) распространение звуковых волн зависит от геометрии и акустических свойств поверхностей, расположенных на пути распространения волн.

Процесс формирования звукового поля в помещении связан с явлениями реверберации и диффузии .

Если в помещении начинает действовать источник звука, то в первый момент времени имеем только прямой звук. По достижении волной звукоотражающей преграды картина поля меняется из-за появления отраженных волн. Если в звуковом поле поместить предмет, размеры которого малы по сравнению с длиной звуковой волны, то практически не наблюдается искажения звукового поля. Для эффективного отражения необходимо, чтобы размеры отражающей преграды были больше или равны длине звуковой волны.

Звуковое поле, в котором возникает большое количество отраженных волн с различными направлениями, в результате чего удельная плотность звуковой энергии одинакова по всему полю, называется диффузным полем.

После прекращения источником излучения звука акустическая интенсивность звукового поля уменьшается до нулевого уровня за бесконечное время. Практически считается, что звук полностью затухает, когда его интенсивность падает в 10 6 раз от уровня, существующего в момент его выключения. Любое звуковое поле как элемент колеблющейся среды обладает собственной характеристикой затухания звука – реверберацией ("послезвучание").

Упругие волны, распространяющиеся в сплошных средах, на­зываются звуковыми волнами. Собственно звуком называются волны, частоты которых лежат в пределах восприятия человече­ским органом слуха. Ощущение звука возникает у человека, если на его слуховой аппарат воздействуют волны с частотой примерно от 16 до 20 000 гц. Волны с частотой, лежащей за пределами этих границ, не слышны, так как не создают слуховых ощущений. Упругие волны с частотой ниже 16 гц называются инфразвуком, а с частотой от 20 000 гц до 10 8 -10 9 гц - ультразвуком. Область физики, которая изучает способы возбуждения звуковых волн, их распространение и взаимодействие со средой, называется аку­стикой.

Полученные нами в предыдущих главах общие закономерности колебательного и волнового видов механического движения приме­нимы и к изучению акустических явлений. Однако ряд специаль­ных вопросов, связанных с особенностями восприятия звука и его технического использования, привел к выделению акустики в осо­бую область физики.

Для возникновения и распространения звуковых волн необ­ходимо наличие упругой среды (твердое тело, воздух, вода). Чтобы убедиться в этом, поместим обычный электрический звонок под воздушный колокол. Пока из-под колокола воздух не откачан, звонок отчетливо слышен. По мере откачивания воздуха звук ос­лабевает и наконец пропадает вовсе. Воздушная среда под коло­колом становится настолько разреженной, что уже не может пе­редавать звуковые колебания. Разрежение должно быть таким, чтобы молекулы газа находились друг от друга на расстояниях боль­ших, чем расстояния, на которых проявляются силы молекуляр­ного взаимодействия. Тогда молекулы, получившие от молоточка звонка некоторое количество движения, не могут передать его нап­равленно соседним молекулам, а рассеивают при случайных соуда­рениях, которыми обмениваются в тепловом движении.

Как мы видели, возникновение волн возможно, если среда ока­зывает упругое сопротивление деформациям и обладает инерцией.

Твердое тело оказывает сопротивление деформациям как продоль­ным - растяжению и сжатию, так и сдвигу. Поэтому в твердом теле звуковые волны могут быть и продольные, и поперечные. В жидкостях и газах, которые не оказывают в обычных условиях сопротивления сдвигу, звуковые волны только продольные.

Звуковые волны в среде создаются колеблющимся телом. На­пример, колебание мембраны телефона создает в прилегающем слое воздуха последовательно сжатия и разрежения, распространяющие­ся во все стороны.

Для изучения состояния среды, в которой распространяется звуковая волна, можно прибегнуть к способу, который мы исполь­зовали при изучении движения жидкости. В каждой точке про­странства, заполненного средой, находящейся в состоянии звуко­вого движения, происходят периодические изменения: а) положе­ния частицы относительно равновесного, б) скорости смещения частицы, в) величины давления (сжатия и разрежения) относительно среднего их значения, существующего в невозмущенной среде. Изменение давления в этом случае называется избыточным или звуковым давлением. Если мы представим себе, что в каждой точке среды находятся миниатюрные датчики приборов, измеряющих эти величины, то их одновременные показания дадут нам мгновенную картину состояния среды. Ряд следующих друг- за другом таких мгновенных картин даст изменение состояния среды со временем. Поскольку волновое движение периодично и во времени, и в про­странстве, то, зная скорость распространения звуковой волны" и пронаблюдав изменение указанных выше характеристик в одной точке изотропной среды с малым затуханием, можно найти их для всего пространства, занятого средой, в которой распространяются звуковые волны. Пространство, заполненное средой в состоянии звукового движения, называется звуковым полем.

К линейным характеристикам звукового поля в жидкостях и газах относят звуковое давление, смещение частиц среды, скорость колебаний и акустическое сопротивление среды.

Звуковым давлением в газах и жидкостях называют разность между мгновенным значением давления в точке среды при прохождении через нее звуковой волны и статическим давлением в той же точке, т. е.

Звуковое давление - величина знакопеременная: в моменты сгущения (уплотнения) частиц среды она положительная, в моменты разрежения (расширения) среды - отрицательная. Эту величину оценивают по амплитуде или по эффективному значению. Для синусоидальных колебаний эффективное значение составляет амплитудного.

Звуковое давление представляет собой силу, действующую на единицу поверхности: В системе его измеряют в ньютонах на квадратный метр Эта единица называется паскалем и обозначается Па. В абсолютной системе единиц звуковое давление измеряют в динах на квадратный сантиметр: Ранее эту единицу называли баром. Но так как единица атмосферного давления, равная , также называлась баром, то при стандартизации название «бар» осталось за единицей атмосферного давления. В системах связи, вещания и в подобных системах имеют дело со звуковыми давлениями, не превышающими 100 Па, т. е. в 1000 раз меньшими атмосферного давления.

Смещением называют отклонение частиц среды от ее статического положения под действием проходящей звуковой волны. Если отклонение происходит по направлению движения волны, то смещению приписывают положительный знак а при противоположном направлении - отрицательный знак. Смещение измеряют в метрах (в системе или сантиметрах (в абсолютной системе единиц).

Скоростью колебаний называют скорость движения частиц среды под действием проходящей звуковой волны: где смещение частиц среды; время.

При движении частицы среды в направлении распррстранения волны скорость колебаний считается положительной, а в обратном направлении - отрицательной. Заметим, что эту скорость нельзя путать со скоростью движения волны, которая постоянна для данных среды и условий распространения волн.

Скорость колебаний измеряют в метрах в секунду или в сантиметрах в

Удельным акустическим сопротивлением называют отношение звукового давления к скорости колебаний Это справедливо для линейных условий, в частности когда звуковое давление значительно меньше статического. Удельное акустическое сопротивление определяется свойствами среды материала и условиями распространения волн (см. § табл. 1.1 и 1.2 приведены значения удельного сопротивления для ряда сред и условий, а на рис. 1.1 дана зависимость удельного сопротивления от высоты над уровнем моря. В общем случае удельное Акустическое сопротивление - комплексная величина где активная и реактивная составляющие удельного акустического сопротивления. (Прилагательное «удельное» часто для краткости опускают.) Размерность удельного акустического сопротивления в системе а в абсолютной системе Если известно удельное сопротивление то пользуются собтношением

ЗВУКОВОЕ ПОЛЕ - совокупность пространственно-временных распределений величин, характеризующих рассматриваемое звуковое возмущение. Важнейшие из них: звуковое давление р, колебательная скорость частиц v, колебательное смещение частиц x, относительное изменение плотности (т. н. акустич. сжатие) s=dr/r (где r - плотность среды), адиабатич. изменение темп-ры dТ , сопровождающее сжатие и разрежение среды. При введении понятия 3. п. среду рассматривают как сплошную и молекулярное строение вещества во внимание не принимают. 3. п. изучают либо методами геометрической акустики , либо на основе теории волн. При достаточно гладкой зависимости величин, характеризующих 3. п., от координат и времени (т. е. при отсутствии скачков давления и колебат. скорости от точки к точке) задание пространственно-временной зависимости одной из этих величин (напр., звукового давления) полностью определяет пространственно-временные зависимости всех остальных. Эти зависимости определяются ур-ниями 3. п., к-рые в отсутствие дисперсии скорости звука сводятся к волновому ур-нию для каждой из величин и ур-ниям, связывающим эти величины между собой. Напр., звуковое давление удовлетворяет волновому ур-нию

А при известном р можно определить остальные характеристики 3. п. по ф-лам:

где с - скорость звука, g=c p /c V - отношение теплоёмкости при пост. давлении к теплоёмкости при пост. объёме, а - коэф. теплового расширения среды. Для гармонич. 3. п. волновое ур-ние переходит в ур-ние Гельмгольца: Dр +k 2 р = 0, где k= w/c - волновое число для частоты w, а выражения для v и x принимают вид:

Кроме того, 3. п. должно удовлетворять граничным условиям, т. е. требованиям, к-рые налагают на величины, характеризующие 3. п., физ. свойства границ - поверхностей, ограничивающих среду, поверхностей, ограничивающих помещённые в среду препятствия, и поверхностей раздела разл. сред. Напр., на абсолютно жёсткой границе нормальная компонента колебат. скорости v n должна обращаться в нуль; на свободной поверхности должно обращаться в нуль звуковое давление; на границе, характеризующейся импедансом акустическим, p/v n должно равняться удельному акустич. импедансу границы; на поверхности раздела двух сред величины р и v n по обе стороны от поверхности должны быть попарно равны. В реальных жидкостях и газах имеется дополнит. граничное условие: обращение в нуль касательной компоненты колебат. скорости на жёсткой границе или равенство касательных компонент на поверхности раздела двух сред. В твёрдых телах внутр. напряжения характеризуются не давлением, а тензором напряжений, что отражает наличие упругости среды по отношению к изменению не только её объёма (как в жидкостях и газах), но и формы. Соответственно усложняются и ур-ния 3. п., и граничные условия. Ещё более сложны ур-ния для анизотропных сред. Ур-ния 3. п. и граничные условия отнюдь не определяют сами по себе вид волн: в разл. ситуациях в той же среде при тех же граничных условиях 3. п. будут иметь разный вид. Ниже описаны разные виды 3. п., возникающие в разл. ситуациях. 1) Свободные волны - 3. п., к-рое может существовать во всей неогранич. среде в отсутствие внеш. воздействий, напр., плоские волны p=p(x 6ct) , бегущие вдоль оси х в положительном (знак "-") и отрицательном (знак "+") направлениях. В плоской волне p/v = brс , где rс - волновое сопротивление среды. В местах положит. звукового давления направление колебат. скорости в бегущей волне совпадает с направлением распространения волны, в местах отрицат. давления - противоположно этому направлению, а в местах обращения давления в нуль колебат. скорость также обращается в нуль. Гармонич. плоская бегущая волна имеет вид: p =p 0 cos(wt -kx+ j), где р 0 и j 0 - соответственно амплитуда волны и её нач. фаза в точке х=0 . В средах с дисперсией скорости звука скорость гармонич. волны с =w/k зависит от частоты. 2) Колебания в огранич. областях среды в отсутствие внеш. воздействий, напр. 3. п., возникающее в замкнутом объёме при заданных нач. условиях. Такие 3. п. можно представить в виде суперпозиции стоячих волн, характерных для данного объёма среды. 3) 3. п., возникающие в неогранич. среде при заданных нач. условиях - значениях р и v в нек-рый нач. момент времени (напр., 3. п., возникающие после взрыва). 4) 3. п. излучения, создаваемые колеблющимися телами, струями жидкости или газа, захлопывающимися пузырьками и др. естеств. или искусств. акустич. излучателями (см. Излучение звука ).Простейшими по форме поля излучениями являются следующие. Монопольное излучение - сферически симметричная расходящаяся волна; для гармонич. излучения она имеет вид: р = -i rwQехр (ikr )/4pr , где Q - производительность источника (напр., скорость изменения объёма пульсирующего тела, малого по сравнению с длиной волны), помещённого в центр волны, а r - расстояние от центра. Амплитуда звукового давления при монопольном излучении изменяется с расстоянием как 1/r , а

в неволновой зоне (kr <<1) v изменяется с расстоянием как 1/r 2 , а в волновой (kr >>1) - как 1/r . Сдвиг фаз j между р и v монотонно убывает от 90° в центре волны до нуля на бесконечности; tg j=1/kr . Дипольное излучение - сферич. расходящаяся волна с "восьмёрочной" характеристикой направленности вида:

где F - сила, приложенная к среде в центре волны, q - угол между направлением силы и направлением на точку наблюдения. Такое же излучение создаётся сферой радиуса a <u=F/2 prwa 3 . Поршневое излучение - 3. п., создаваемые поступательными колебаниями плоского поршня. Если его размеры >>l, то излучение представляет собой квазиплоскую волну, распространяющуюся в виде огранич. пучка, опирающегося на поршень. По мере удаления от поршня дифракция размывает пучок, переходящий на большом расстоянии от поршня в многолепестковую расходящуюся сферич. волну. Все виды 3. п. излучения на большом расстоянии от излучателя (в т. н. дальней зоне, или зоне Фраунгофера) асимптотически принимают вид расходящихся сферич. волн: р =A ехр (ikr)R (q, j)/r , где А -постоянная, q и j - углы сферич. системы координат, R (q, j) - характеристика направленности излучения. Т.о., асимптотически поле убывает обратно пропорционально расстоянию точки наблюдения от области расположения источника звука. Началом дальней зоны обычно считают расстояние r =D 2 /l, где D - поперечные размеры излучающей системы. В т. н. ближней зоне (френелевская зона) для 3. п. излучения в общем случае нет к--л. определённой зависимости от r , а угл. зависимость меняется при изменении r - характеристика направленности ещё не сформирована. 5) 3. п. фокусировки - поля вблизи фокусов и каустик фокусирующих устройств, характеризующиеся повыш. значениями звукового давления, обращающегося (при пользовании приближениями геом. акустики) в бесконечность в фокусах и на каустиках (см. Фокусировка звука ). 6) 3. п., связанные с наличием в среде ограничивающих поверхностей и препятствий. При отражении и преломлении плоских волн на плоских границах возникают также плоские отражённые и преломлённые волны. В волноводах акустических , заполненных однородной средой, суперпозиция плоских волн образует нормальные волны. При отражении гармонич. плоских волн от плоских границ образуются стоячие волны, причём результирующие поля могут оказаться стоячими в одном направлении и бегущими - в другом. 7) 3. п., затухающие вследствие неидеальности среды - наличия вязкости, теплопроводности и т. п. (см. Поглощение звука ).Для бегущих волн влияние такого затухания характеризуют множителем ехр aх , где a - амплитудный пространственный коэф. затухания, связанный с добротностью Q среды соотношением: a=k/2 Q. В стоячих волнах появляется множитель ехр (-dt >>

Звук - слуховые ощущения человека, вызываемые механическими колебаниями упругой среды, воспринимаемые в области частот (16 Гц - 20 кГц) и при звуковых давлениях, превышающих порог слышимости человека.

Частоты колебаний среды, лежащие ниже и выше диапазона слышимости, называются соответственно инфразвуковыми и ультразвуковыми .

1. Основные характеристики звукового поля. Распространение звука

А . Параметры звуковой волны

Звуковые колебания частиц упругой среды имеют сложный характер и могут быть представлены в виде функции времени a = a(t) (рис 3.1, а ).

Рис.3.1. Колебания частиц воздуха.

Простейший процесс описывается синусоидой (рис. 3.1,б )

,

где a max - амплитуда колебаний; w = 2 p f - угловая частота; f - частота колебаний.

Гармонические колебания с амплитудой a max и частотой f называются тоном .

Сложные колебания характеризуются эффективным значением на временном периоде Т

.

Для синусоидального процесса справедливо соотношение

Для кривых другой формы отношение эффективного значения к максимальному составляет от 0 до 1.

В зависимости от способа возбуждения колебаний различают:

плоскую звуковую волну , создаваемую плоской колеблющейся поверхностью;

цилиндрическую звуковую волну, создаваемую радиально колеблющейся боковой поверхностью цилиндра;

сферическую звуковую волну , создаваемую точечным источником колебаний типа пульсирующий шар.

Основными параметрами, характеризующими звуковую волну, являются:

звуковое давление p зв, Па;

интенсивность звука I , Вт/м 2 .

длина звуковой волны l, м;

скорость распространения волны с , м/с;

частота колебаний f , Гц.

С физической точки зрения распространение колебаний состоит в передаче импульса движения от одной молекулы к другой. Благодаря упругим межмолекулярным связям движение каждой из них повторяет движение предыдущей. Передача импульса требует определенной затраты времени, в результате чего движение молекул в точках наблюдения происходит с запаздыванием по отношению к движению молекул в зоне возбуждения колебаний. Таким образом, колебания распространяются с определенной скоростью. Скорость распространения звуковой волны с - это физическое свойство среды.

Длина волны l равна длине пути, проходимого звуковой волной за один период Т:

где с - скорость звука, Т = 1/f .

Звуковые колебания в воздухе приводят к его сжатию и разрежению. В областях сжатия давление воздуха возрастает, а в областях разрежения понижается. Разность между давлением, существующем в возмущенной среде p ср в данный момент, и атмосферным давлением p атм, называется звуковым давлением (рис.3.3). В акустике этот параметр является основным, через который определяются все остальные.

p зв = p ср - p атм. (3.1)

Рис.3.3. Звуковое давление

Среда, в которой распространяется звук, обладает удельным акустическим сопротивлением z A , которое измеряется в Па*с/м (или в кг/(м 2 *с) и представляет собой отношение звукового давления p зв к колебательной скорости частиц среды u

z A = p зв /u = r* с , (3.2)

где с - скорость звука, м; r - плотность среды, кг/м 3 .

Для различных сред значения z A различны.

Звуковая волна является носителем энергии в направлении своего движения. Количество энергии, переносимой звуковой волной за одну секунду через сечение площадью 1 м 2 , перпендикулярное направлению движения, называется интенсивностью звука . Интенсивность звука определяется отношением звукового давления к акустическому сопротивлению среды Вт/м 2:

Для сферической волны от источника звука с мощностью W , Вт интенсивность звука на поверхности сферы радиуса r равна

I = W / (4p r 2),

то есть интенсивность сферической волны убывает с увеличением расстояния от источника звука. В случае плоской волны интенсивность звука не зависит от расстояния.

В . Акустическое поле и его характеристики

Поверхность тела, совершающая колебания, является излучателем (источником) звуковой энергии, который создает акустическое поле.

Акустическим полем называют область упругой среды, которая является средством передачи акустических волн. Акустическое поле характеризуется:

звуковым давлением p зв, Па;

акустическим сопротивлением z А , Па*с/м.

Энергетическими характеристиками акустического поля являются:

интенсивность I , Вт/м 2 ;

мощность звука W , Вт – количество энергии, проходящей за единицу времени через охватывающую источник звука поверхность.

Важную роль при формировании акустического поля играет характеристика направленности звукоизлучения Ф , т.е. угловое пространственное распределение образующегося вокруг источника звукового давления.

Все перечисленные величины взаимосвязаны и зависят от свойств среды, в которой распространяется звук.

Если акустическое поле не ограничено поверхностью и распространяется практически до бесконечности, то такое поле называют свободным акустическим полем.

В ограниченном пространстве (например, в закрытом помещении) распространение звуковых волн зависит от геометрии и акустических свойств поверхностей , расположенных на пути распространения волн.

Процесс формирования звукового поля в помещении связан с явлениями реверберации и диффузии .

Если в помещении начинает действовать источник звука, то в первый момент времени имеем только прямой звук. По достижении волной звукоотражающей преграды картина поля меняется из-за появления отраженных волн. Если в звуковом поле поместить предмет, размеры которого малы по сравнению с длиной звуковой волны, то практически не наблюдается искажения звукового поля. Для эффективного отражения необходимо, чтобы размеры отражающей преграды были больше или равны длине звуковой волны.

Звуковое поле, в котором возникает большое количество отраженных волн с различными направлениями, в результате чего удельная плотность звуковой энергии одинакова по всему полю, называется диффузным полем .

После прекращения источником излучения звука акустическая интенсивность звукового поля уменьшается до нулевого уровня за бесконечное время. Практически считается, что звук полностью затухает, когда его интенсивность падает в 10 6 раз от уровня, существующего в момент его выключения. Любое звуковое поле как элемент колеблющейся среды обладает собственной характеристикой затухания звука – реверберацией ("послезвучание").

С . Уровни акустических величин

Человек ощущает звук в широком диапазоне звуковых давлений p зв (интенсивностей I ).

Стандартным порогом слышимости называют эффективное значение звукового давления (интенсивности), создаваемого гармоническим колебанием с частотой f = 1000 Гц, едва слышимым человеком со средней чувствительностью слуха.

Стандартному порогу слышимости соответствует звуковое давление p o =2*10 -5 Па или интенсивность звука I o =10 -12 Вт/м 2 . Верхний предел звуковых давлений, ощущаемых слуховым аппаратом человека, ограничивается болевым ощущением и принят равным p max = 20 Па и I max = 1 Вт/м 2 .

Величина слухового ощущения L при превышении звуковым давлением p зв стандартного порога слышимости определяется по закону психофизики Вебера - Фехнера:

L = q lg(p зв /p o),

где q - некоторая постоянная, зависящая от условий проведения эксперимента.

С учетом психофизического восприятия звука человеком для характеристики значений звукового давления p зв и интенсивности I были введены логарифмические величины – уровни L (с соответствующим индексом), выраженные в безразмерных единицах – децибелах , дБ, (увеличение интенсивности звука в 10 раз соответствует 1 Белу (Б) – 1Б = 10 дБ):

L p = 10 lg (p /p 0) 2 = 20 lg (p /p 0), (3.5, а )

L I = 10 lg (I /I 0). (3.5, б )

Следует отметить, что при нормальных атмосферных условиях L p =L I .

По аналогии были введены также и уровни звуковой мощности

L w = 10 lg (W /W 0), (3.5, в )

где W 0 =I 0 *S 0 =10 -12 Вт – пороговая звуковая мощность на частоте 1000 Гц, S 0 = 1 м 2 .

Безразмерные величины L p , L I , L w достаточно просто измеряются приборами, поэтому их полезно использовать для определения абсолютных значений p , I , W по обратным к (3.5) зависимостям

(3.6, а )

(3.6, б )

(3.6, в )

Уровень суммы нескольких величин определяется по их уровням L i , i = 1, 2, ..., n соотношением

(3.7)

где n - количество складываемых величин.

Если складываемые уровни одинаковы, то

L = L + 10 lg n .