Школьные проекты по робототехнике. Чтобы данный проект был успешно реализован, необходимо выполнить некоторые шаги

  • Дата: 23.11.2023

Мельников Константин Александрович

Руководитель проекта:

Кучер Лариса Петровна

Учреждение:

ТМК ОУ «Дудинская средняя школа №7»

В данном исследовательском проекте по робототехнике на тему "Что такое робототехника?" ученик 4 класса школы дает определение робототехнике и роботу, описывает их значение, а также излагает информацию о развитии робототехники в России.

Созданный учащимся проект на тему "Что такое робототехника?" направлен на реализацию поставленной цели создать робота из конструктора LEGO Mindstorms и познакомить с ним одноклассников своей школы. Исследовательская работа посвящена как теоретическому изучению машиностроения, так и практической деятельности.


Данная тема исследовательской работы "Что такое робототехника", выбранная автором, очень актуальна, так как робототехника вошла в мир в 60-е годы XX века как одно из направлений машиностроения, а сегодня занимает ведущее место в науке и жизни современного человека.

Предложенный автором проект по робототехнике на тему "Что такое робототехника?" будет интересен для учеников 3, 4 и 5 класса школы, увлекающихся робототехникой и лего-конструированием, поможет выявить у них интерес к роботостроению, программированию и конструированию.

Введение
1. Анкетирование о роботах.
2. Что такое робот и робототехника?
3. Значение робототехники.
4. Всё для изучения основ робототехники.
5. Развитие робототехники в России.
Заключение
Список литературных источников
Приложение

Введение

Некоторые идеи, положенные позднее в основу робототехники , появились ещё в античную эпоху. Найдены остатки движущихся статуй, изготовленных в I веке до нашей эры. Примерно к 30-м годам XX века появились андроиды, реализующие элементарные движения и способные произносить по команде человека простейшие фразы.


Одной из первых таких разработок стала конструкция американского инженера Д. Уэксли, созданная для Всемирной выставки в Нью-Йорке в 1927 году.В 50-х годах XX века появились механические манипуляторы для работы с радиоактивными материалами. Они были способны копировать движения рук оператора, который находился в безопасном месте.

К 1960-му году были проведены разработки дистанционно управляемых колёсных платформ с манипулятором, телекамерой и микрофоном для обследования и сбора проб в зонах повышенной радиоактивности.

Итак, робототехника вошла в мир в 60-е годы XX века как одно из направлений машиностроения.

  • механика и вычислительная техника,
  • электроника и энергетика,
  • измерительная техника,
  • теория управления.
  • 1975 год - 8 000 роботов;
  • 1991 год - 300 000;
  • 2000 год - 800 000.

Объект исследования:

Предмет исследования: робот.

Цель проекта : создать робота из конструктора LEGO Mindstorms и познакомить с ним ребят.

Задачи проекта:

  1. Узнать, что такое робот.
  2. Создание роботов.
  3. Где применяется робототехника?
  4. Как робототехника помогает человеку?

Методы исследования: наблюдение, анкетирование, эксперимент, сравнение, описание.

Практическая значимость работы: определение значение роботов в жизни человека.

План исследования:

  1. Сбор и изучение информации о робототехнике.
  2. Анкетирование.
  3. Практическая работа (создание роботов в кружке).
  4. Оформление полученных результатов в виде презентации.
  5. Защита проекта.

Что такое робот и робототехника?

Робототехника - это прикладная наука, занимающаяся разработкой автоматизированных технических систем и являющаяся важнейшей технической основой развития производства.


Иными словами – это естественное логическое продолжение техники как явления.

Робототехника опирается на такие дисциплины, как электроника, механика, кибернетика, телемеханика, мехатроника, информатика, а также радиотехника и электротехника. Выделяют строительную, промышленную, бытовую, медицинскую, авиационную и экстремальную (военную, космическую, подводную) робототехнику.

Слово «роботика» (или «роботехника», «robotics») было впервые использовано в печати Айзеком Азимовым в научно-фантастическом рассказе «Лжец», опубликованном в 1941 году.

В основу слова «» легло слово «робот », придуманное в 1920 г. чешским писателем Карелом Чапеком и его братом Йозефом для научно-фантастической пьесы Карела Чапека «Р. У. Р.» («Россумские универсальные роботы»), впервые поставленной в 1921 г. и пользовавшейся успехом у зрителей. В ней хозяин завода налаживает выпуск множества андроидов, которые сначала работают без отдыха, но потом восстают и губят своих создателей.

Робот – это техническая система, способная замещать человека или помогать ему в выполнении различных задач.

Можно использовать несколько подходов к классификации роботов - например, по сфере применения, по назначению, по способу передвижения, и пр. По сфере основного применения можно выделить промышленных роботов, исследовательских роботов, роботов, используемых в обучении, специальных роботов.

Важнейшие классы роботов широкого назначения - манипуляционные и мобильные роботы.

Манипуляционный робот - автоматическая машина (стационарная или передвижная), состоящая из исполнительного устройства в виде манипулятора, имеющего несколько степеней подвижности, и устройства программного управления, которая служит для выполнения в производственном процессе двигательных и управляющих функций.

Такие роботы производятся в напольном, подвесном и портальном исполнениях. Получили наибольшее распространение в машиностроительных и приборостроительных отраслях.

Мобильный робот - автоматическая машина, в которой имеется движущееся шасси с автоматически управляемыми приводами. Такие роботы могут быть колёсными, шагающими и гусеничными (существуют также ползающие, плавающие и летающие мобильные робототехнические системы).

По последним данным, сегодня в мире работают 1,5 млн. самых различных роботов.


Значение робототехники

  • в промышленности;
  • в сельском хозяйстве;
  • в транспорте и машиностроении;
  • в медицине;
  • в исследовательских работах;
  • в космосе.
  • тушить пожары,
  • выполнять спасательные операции во время стихийных бедствий,
  • устранять аварии на атомных электростанциях,
  • в борьбе с терроризмом.

МУНИЦИПАЛЬНОЕ КАЗЁННОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ
МЕХОНСКАЯ СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА

«РОБОТОТЕХНИКА»

(проект)

Выполнили:

Бахарев Даниил,

Безгодов Сергей,

6 класс

Руководитель:

Пучкова Тамара Анатольевна,

учитель информатики

Мехонское

2017

1. Что такое «робот»……………………………………………………………………

2. Первые роботы ………………………………………………………………………

3. Виды роботов ………………………………………………………………………..

4. Законы робототехники ……………………………………………………………...

5. Сравнение роботов NXT и EV 3 …………………………………………………….

6. Заключение …………………………………………………………………………..

7. Список используемых интернет-ресурсов …………………………………………

Приложение 1. Виды роботов …………………………………………………………

Приложение 2. Наше участие в турнирах по робототехнике ……………………….

Введение

В нашей повседневной жизни - в школе, на работе, дома нас окружает огромное количество технических устройств: телевизор, стиральная машина, мобильный телефон, компьютерная техника и многое другое. А ведь каких-то 30-40 лет назад люди обходились без телевизора, не говоря уже о том, что способом передачи информации были лишь письма и телеграммы. С каждым годом наука развивается, исследования не стоят на месте. Изобретаются все новые и новые технологии. Мне нравится наблюдать за этим прогрессом. Поэтому я увлекся робототехникой. Эта отрасль будет развиваться в мире очень быстро.

Однажды в школе нам предложили участвовать в турнире по робототехнике. Мы были очень увлечены сборкой роботов, смогли научиться их программировать. И мы стали их изучать.

Робототехника, как нам кажется, именно этим и интересна - в ней соединяются многие науки - здесь надо знать информатику, разбираться в физике, биологии, математике. При конструировании робота развивается мышление, логика, математические и алгоритмические способности, исследовательские навыки.

Цель проектной работы - привлечение интереса к научно- техническому творчеству, технике, высоким технологиям.

Задача - освоить азы программирования и сборки роботов на базе процессоров NXT и EV 3.

Актуальность - быть технически грамотным специалистом и в будущем стать программистом, работать в сфере IT . А, впоследствии, возможно, у нас получится создать уникальный робот, который поможет людям в сложных бытовых условиях или опасных профессиях или даже будет отправлен в космос для исследования других планет!

    Что такое РОБОТ?

Слово «робот» было придумано чешским писателем Карелом Чапеком и его братом Йозефом и впервые использовано в пьесе Чапека «Р.У.Р.» («Россумские универсальные роботы») в 1920 году. В нем был описан процесс сборки роботов самими роботами на фабрике.

В чешском языке «robota» значит тяжелый труд, каторга, барщина.

Герою пьесы - инженеру Россу, удалось изобрести сложную машину, которая могла выполнять все работы человека. Вот эту человекоподобную машину автор и назвал «роботом». Роботы имели полное внешнее сходство с человеком и могли выполнять всякую работу. Спрос на них был настолько велик, что завод вскоре перешел на их массовое производство. Хозяева роботов стали заменять ими живых людей на фабриках и заводах. Но однажды роботы набросились на людей и перебили их всех. Люди на Земле прекратили свое существование, а их место заняли разумные автоматы...

Такой финал первой пьесы о роботах оставил глубокий след в душах первых зрителей и сформировал негативное отношение общества к ним на многие десятилетия. Впрочем, техника продолжала развиваться, а люди - строить роботов вне зависимости от эмоций.

    Первые РОБОТЫ

Первые мысли к созданию роботов возникли еще до нашей эры: в середине 3-го тысячелетия египтяне изобрели «думающих машин» - внутри статуй прятались жрецы, чтобы давать предсказания и советы.

А в 50-х 19 века были найдены чертежи человекоподобного робота, сделанные Леонардо да Винчи, примерно в 1495 году. На чертеже был детально изображен механический рыцарь, который мог сидеть, раздвигать руки, двигать головой, открывать и закрывать челюсти. По его замыслам работой рук должно было управлять механическое программируемое устройство в груди, ноги должны были управляться с помощью рукоятки, приводящий в движение трос, связанный с ногами. До появления промышленных роботов считалось, что роботы должны выглядеть подобно людям.

Один из первых роботов был построен американским инженером Венсли в 1925 году. Автор дал ему имя мистер Телевокс. Телевокс обладал способностью слышать и исполнять несколько различных приказаний, отдаваемых человеком при помощи звуков свистка. Подавая различное число повторных свистков, Венсли мог заставить робота открыть окна, закрыть дверь, пустить в ход вентилятор и пылесос, а также зажечь свет в комнате. Телевокс был не только слышащим и говорящим роботом. Он мог выполнять некоторые домашние работы, заменяя домработницу. При помощи свистков можно отдать соответствующее распоряжение, и механический слуга подогреет ужин. Как это он сделает? Очень просто. Уходя из дому, хозяйка должна поставить кастрюлю и сковороды с кушаньями на электрическую плиту. Телевокс тогда самостоятельно включит плиту в электросеть.

Самыми первыми были изобретены именно промышленные роботы. В 1980 году в СССР создан центральный научно-исследовательский и опытно-конструкторский институт робототехники и технической кибернетики (ЦНИИ РТК) и изобретен первый пневматический промышленный робот МП-8 с позиционным управлением.

У истоков робототехники стояли талантливые люди. Сын профессора славистики, выходца из России, Норберт Винер получил ученую степень доктора философии в Гарвардском университете уже в возрасте 18 лет!

Появление книги Норберта Винера "Я - математик", как мощный взрыв потрясло весь мир. Именно она провозгласила рождение новой науки - КИБЕРНЕТИКИ. Винер был ученым широкого профиля.

Слово робот прочно вошло в нашу жизнь.

    Виды РОБОТОВ

За время своего развития – роботы пережили эволюцию, как сферы использования, так и функциональных возможностей.

Роботы первого поколения - это роботы с программным управлением, предназначенные для выполнения определенной, жестоко запрограммированной последовательности операций, диктуемой соответствующим технологическим процессом.

Роботы второго поколения – это «очувствленные» роботы, предназначенные для работы с неориентированными объектами произвольной формы, осуществления сборочных и монтажных операций, сбора информации о внешней среде с помощью большого количества сенсоров.

Роботы третьего поколения - это так называемые интеллектуальные, или разумные, роботы, предназначенные не столько для воспроизведения физических и двигательных функций человека, сколько для автоматизации его интеллектуальной деятельности, т.е. для решения интеллектуальных задач. Они принципиально отличаются от роботов второго поколения сложностью функций и совершенством управляющей системы, включающей в себя элементы искусственного интеллекта.

По области использования роботы делятся на виды:

    промышленные,

  • медицинские,

    обучающие,

  • охранные роботы,

    биороботы,

    роботы-игрушки,

    нанороботы,

    а также андроиды и киборги.

Существуют роботы и для развлечений. Ежегодно проводит турнир роботов по футболу по упрощенным правилам. А также роботы способны играть в шахматы. Чемпион мира Гарри Каспаров проиграл в шахматном поединке роботу.

    Законы робототехники

У роботехники есть свои законы.

Их придумал американский писатель-фантаст, биохимик, автор около 500 художественных книг Айзек Азимов.

При создании робототехники нужно руководствоваться правилами, по которым робот не может причинить вред человеку, даже если он бездействует; задача робота – подчиняться приказам человека, если они не несут вред людям. Дружественное отношение к человеку должно быть главным в программировании роботов:

1. Робот не должен вредить человеку или своим бездействием допустить, чтобы человеку был причинён вред.

2. Робот должен выполнять приказы человека, кроме приказов, противоречащих первому закону.

3. Робот должен заботиться о своей безопасности, если это не противоречит первому и второму законам.

    Сравнение роботов NXT и EV3

Программный блок Модуль EV3 служит центром управления и энергетической станцией для вашего робота.

Сервомоторы

3 интерактивных сервомотора. Три интерактивных сервомотора оснащены встроенными датчиками оборотов, которые управляют мощностью моторов, измеряют и задают различную скорость вращения, обеспечивая высокую точность движений робота.

Большой мотор (х2) Позволяет запрограммировать точные и мощные действия робота.
Средний мотор. Сохраняет точность, однако полученные в результате компактность и скорость реакции сказываются на мощности.

Датчики расстояния

Ультразвуковой датчик расстояния Помогает роботу измерять расстояние до окружающих предметов, избегать препятствий и реагировать на движение других объектов.

ИК-датчик. Инфракрасный датчик - это цифровой датчик, который может обнаруживать инфракрасный цвет, отраженный от сплошных объектов. Он также может обнаруживать инфракрасные световые сигналы, посланные с удаленного инфракрасног о маяка, который дистанционно управляет роботом, а также может быть использован в качестве отслеживающего устройства для роботов.

Датчики освещенности и цвета

Датчик света. Позволяет роботу реагировать на изменение освещённости и цвета поверхности.

Датчик цвета. Распознает семь различных цветов .

Датчик цвета. Распознает семь различных цветов и определяет яркость света.

Датчик звука

Датчик звука позволяет роботу реагировать на звуки различной громкости – можно запрограммировать робота так, чтобы его действия зависели от показаний датчика звука.

Датчики касания

Два датчика касания дают роботу возможность «ощущать» окружающие его препятствия. Можно запрограммировать датчик касания так, чтобы действия робота зависели от того, нажата кнопка датчика или отпущена. Позволяет роботу реагировать на касания, распознает три ситуации: прикосновение, щелчок и освобождение.

Интерфейс программного обеспечения

Заключение

Мы считаем, что выполнили поставленные цели и задачи. Мы освоили простейшие азы программирования, и надеемся, что привлекли внимание к робототехнике учащихся нашей школы.

Роботы в будущем упростят нашу жизнь, сделают ее комфортнее и доступнее. Мы сможем изучать вселенную и проникать с помощью автоматизированных, программированных систем туда, куда никогда не сможет добраться человек. Роботы всегда будут нужны людям с ограниченными возможностями, а также тем людям, чьи профессии сопряжены с риском. Роботы будут строить дома и машины. Прекратиться загрязнение окружающей среды, ведь новые технологии практически безотходны.

Во всем мире уже ведутся серьезные исследования, связанные с глобальным риском создания искусственного сверхчеловека. Но создадут его люди! И может быть мы.

Робот второго поколения

Робот третьего поколения

Приложение№2 Наше участие в турнирах по робототехнике

Муниципальное казенное общеобразовательное учреждение

средняя общеобразовательная школа № 24 р.п. Юрты

Мастер-класс

Формирование метапредметных результатов через метод проектов с использованием конструктора LEGO

Учитель: Щербелева Полина Владимировна

учитель информатики

р.п. Юрты – 2016 г.


Цель

  • продемонстрировать

практические навыки учащихся

школы в робототехническом

направлении;

  • развить информационную культуру.

Задачи

1. Привлечение внимания молодого поколения к инженерным профессиям.

2. Развитие интереса детей к научно-техническому творчеству, технике, высоким технологиям, развитие алгоритмического и логического мышления.

3. Выявление талантливой молодежи и дальнейшая их поддержка в области исследовательской работы и технического творчества.

4. Создание условий для мотивации школьников к научной и творческой деятельности по пространственному конструированию, моделированию, автоматическому управлению роботами.

5. Популяризация и развитие робототехники как одного из направлений современных технологий в образовании детей.

6. Развитие способности учащихся творчески подходить к проблемным ситуациям, самостоятельно находить решения.

7. Разработка и внедрение в образовательно-воспитательную среду инновационного содержания в исследовательской, научно-технической, проектно-конструкторской направленности.


Группа младшее звено (первый год обучения)

Проект «Движение робота

по черной линии»


Этапы проекта:

  • Изучить блоки движение, звук, экран, цикл, переключатель, ожидание и их настройки;
  • Осуществить движение робота по линии в программе MINDSTORMS NXT 2.0 с помощью блоков движение, звук, цикл, переключатель, ожидание;
  • Объединить раннее составленные программы в одну и осуществить поиск и движение робота по линии в программе MINDSTORMS NXT 2.0 с помощью блоков движение, звук, цикл, переключатель, ожидание;
  • Создание поля для проекта;
  • Отладка программы.

Группа среднее звено (первый год обучения)

Проект «Робот - математик»


Этапы проекта

  • Сконструировать робота, добавив в него датчик освещённости;
  • Научиться осуществлять калибровку датчика освещенности;
  • Осуществить обнаружение черты роботом в программе MINDSTORMS NXT 2.0 с помощью блоков движение, звук, цикл, переключатель, ожидание;
  • Осуществить движение робота по линии в программе MINDSTORMS NXT 2.0 с помощью блоков движение, цикл, переключатель, ожидание;
  • Осуществлять подсчет черных полос и вывод на дисплей ответа в программе MINDSTORMS NXT 2.0;
  • Объединить раннее составленные программы в одну и осуществить поиск, движение робота по черной полосе и подсчет результатов в программе MINDSTORMS NXT 2.0 с помощью блоков движение, счет, цикл, переключатель, ожидание;
  • Создание поля для проекта;
  • Отладка программы.

Группа среднее звено (второй год обучения)

Проект «Робот – Чертежник»


Этапы проекта

  • Изучить блоки движение, экран, цикл, переключатель, ожидание и их настройки;
  • Сконструировать робота;
  • Создание поля для демонстрации проекта;
  • Разметить при помощи линейки направление движение робота;
  • Осуществить движение робота на поле от точки до точки в программе MINDSTORMS NXT 2.0 с помощью блоков движение, цикл, переключатель, ожидание;
  • Объединить программы в одну и осуществить движение робота по полю в программе MINDSTORMS NXT 2.0 с помощью блоков движение, цикл, переключатель, ожидание;
  • Отладка программы.

Проект «Робот на лабораторной работе по физики»


Этапы проекта

  • Сконструировали наклонную плоскость;
  • Закрепляем динамометр;
  • Устанавливаем двигатель для движения динамометра по наклонной плоскости;
  • Привешиваем груз на динамометр;
  • Изучить блоки движение, цикл, переключатель, ожидание и их настройки;
  • Программируем робота;
  • Запускаем программу на тестирование;
  • Вводим полученные данные в главный компьютер NXT;
  • Осуществляем проверку программы вывода данных.

Группа старшее звено (второй год обучения)

Проект «Умное отопление на платформе Arduino»


Этапы проекта

  • Изучить набор Arduino старт;
  • Сформулировать план проекта
  • Схематичное изображение проекта;
  • Подготовить детали к сборке;
  • Сборка модулей и программирование в среде Arduino на языке java;
  • Проверка программы и устранение неисправностей;
  • Размещение освещения в кабинете;
  • Отладка программы.

Результаты мастер – класса

Регулятивные:

− систематизировали и обобщили знания для успешной реализации алгоритма работы собранного робота;

− научились программировать роботов.

Познавательные:

− создали собственного робота, и сумели его запрограммировать

Коммуникативные :

Развили коммуникативные умения при работе в группе или команде.

Личностные :

Развили память и мышление, получили возможность изучения робототехники на старших курсах.


Муниципальное бюджетное образовательное учреждение

средняя общеобразовательная школа №3

Образовательный проект

«Робототехника - первый шаг к открытиям»

Салкина Светлана Николаевна

учитель информатики

1 квалификационной категории

МБОУ СОШ №3

г. Выкса

2014 г.

Аннотация проекта

Робототехника – прикладная наука, занимающаяся разработкой автоматизированных технических систем.

Робототехника опирается на такие дисциплины как электроника, механика, программирование.

Робототехника является одним из важнейших направлений научно-технического прогресса, в котором проблемы механики и новых технологий соприкасаются с проблемами искусственного интеллекта. Активное участие и поддержка Российских и международных научно-технических и образовательных проектов в области робототехники и мехатроники позволит ускорить подготовку кадров, развитие новых научно-технических идей, обмен технической информацией и инженерными знаниями, реализацию инновационных разработок в области робототехники в России и по всему миру.

Человечество остро нуждается в роботах, которые могут без помощи оператора тушить пожары, самостоятельно передвигаться по заранее неизвестной, реальной пересеченной местности, выполнять спасательные операции во время стихийных бедствий, аварий атомных электростанций, в борьбе с терроризмом. Кроме того, по мере развития и совершенствования робототехнических устройств возникла необходимость в мобильных роботах, предназначенных для удовлетворения каждодневных потребностей людей: роботах – сиделках, роботах – домработницах и т.д. Специалисты, обладающие знаниями в этой области, сильно востребованы. Поэтому, внедрение робототехники в учебный процесс и внеурочное время приобретает все большую значимость и актуальность. Основное оборудование используемое при обучении детей робототехнике в школе – это ЛЕГО конструкторы Mindstorms .

LEGO Mindstorms – это конструктор (набор сопрягаемых деталей и электронных блоков) для создания программируемого робота.

Конструкторы LEGO Mindstorms позволяют организовать учебную деятельность по различным предметам и проводить интегрированные занятия. С помощью этих наборов можно организовать высокомотивированную учебную деятельность по пространственному конструированию, моделированию и автоматическому управлению.

Основная задача современного образования – создать среду, облегчающую ребенку возможность раскрытия собственного потенциала. Это позволяет ему свободно действовать, познавая эту среду, а через нее и окружающий мир. Новая роль педагога состоит в том, чтобы организовать и оборудовать соответствующую образовательную среду и побуждать ребенка к познанию и к деятельности.

Новая парадигма образования, реализуемая ФГОС, - это переход от школы информационно-трансляционной к школе деятельностной, формирующей у обучающихся компетенции самостоятельной навигации по освоенным предметным знаниям при решении конкретных личностно значимых задач. Современный человек должен быть мобильным, технически грамотным, готовым к внедрению инновации в жизнь. В перспективе курс робототехники в школе может стать одним из интереснейших способов изучения не только компьютерных технологий и программирования, но и всего окружающего мира.

Изучение «Основ робототехники» создает предпосылки для социализации личности учащихся и обеспечивает возможность ее непрерывного технического образования, а освоение с помощью лего-наборов и других робоконструкторов компьютерных технологий – это путь школьников к современным перспективным профессиям и успешной жизни в информационном обществе. Конечно же, занятия робототехникой не приведут к тому, что все дети захотят стать программистами и роботостроителями, инженерами, исследователями. В первую очередь занятия рассчитаны на общенаучную подготовку школьников, развития их мышления, логики, математических способностей, исследовательских навыков. Робот не ставит оценок и не задает домашних заданий, но заставляет работать умственно и постоянно.

Дети – неутомимые конструкторы, их творческие возможности и технические решения оригинальны. Школьники учатся конструировать «шаг за шагом». Такое обучение позволяет им продвигаться вперед в собственном темпе, стимулирует желание учиться и решать новые, более сложные задачи. Любой признанный и оцененный успех приводит к тому, что ребенок становится более уверенным в себе.

В ходе занятий повышается коммуникативная активность каждого ребенка, формируется умение работать в паре, в группе, происходит развитие творческих способностей.

Робототехника это увлекательно! Мир не стоит на месте, всегда развивается, и кто знает, может именно мои ученики, создадут нанотехнологичный аппарат или нового робота 21 века.

Цель проекта:

    создание условий для изучения основ алгоритмизации и программирования с использованием робота, развитие научно-технического и творческого потенциала личности ученика путем организации его деятельности в процессе интеграции начального инженерно-технического конструирования и основ робототехники.

Задачи проекта:

    освоить среду программирования;

    развивать творческие способности и логическое мышление обучающихся;

    развивать умение выстраивать гипотезу и сопоставлять ее с полученным результатом;

    развивать образное, техническое мышление и умение выразить свой замысел;

    развивать умение работать по предложенным инструкциям по сборке моделей;

    развивать умение творчески подходить к решению задачи;

    развивать умение излагать мысли в четкой логической последовательности, отстаивать свою точку зрения, анализировать ситуацию и самостоятельно находить ответы на вопросы путем логических рассуждений;

    осваивать навыки проведения эксперимента;

    привлекать школьников к сотрудничеству, сотворчеству.

Характеристика охватываемой аудитории

«Порывы, воля, а также желания присущи даже новорожденным детям, между тем как рассудительность и ум появляются у них только с возрастом».

Аристотель

Проект «Робототехника - первый шаг к открытиям» реализуется в 9 классе средней общеобразовательной школы (возраст учащихся 14 – 15 лет).

Подростковый возраст – особенный период в жизни ребенка, недаром его называют затянувшимся кризисом. Самая яркая особенность этого времени – личностная нестабильность, осложняющая жизнь и самим подросткам, и окружающим их взрослым. Нестабильность проявляется, прежде всего, в эмоциональной лабильности, связанной с бурным физическим ростом и физиологическими изменениями.

Для того чтобы развить познавательную деятельность учащихся, формировать интерес к процессу познания необходимо учитывать индивидуальные особенности ребенка.

В подростковом возрасте происходят существенные сдвиги в мыслительной деятельности. Этот особый статус возраста связан с изменением социальной ситуации развития подростков – их стремление приобщиться к миру взрослых. В связи с этим характерным для подростка является развитие самосознания и самооценки, интереса к себе как личности, к своим способностям и возможностям.

Внимание подростка характеризуется объемом и специфической избирательностью, становится произвольным и преднамеренным. Ребенок способен сохранять долгое время устойчивость и высокую интенсивность внимания. Внимание становится хорошо управляемым, контролируемым процессом и увлекательной деятельностью.

Объем памяти подростка увеличивается за счет логического осмысливания материала, наращивается полнота, системность и точность воспроизводимого материала, становится допустимым запоминание абстрактного материала.

Важная особенность – формирование активного, самостоятельного мышления. Проявляется способность мыслить дедуктивно, теоретически, формируется система логических высказываний. Подросток способен самостоятельно и творчески мыслить, сравнивать, делать глубокие по содержанию выводы и обобщения. Немалую роль в процессе обучения играют интересы школьника. Интересы, мотивы, потребности подростков динамичны, весьма неустойчивы. Они проявляют готовность овладеть интересующей областью знания. Учебные интересы подростков находятся в стадии развития, становления. Большое значение имеют также личные успехи подростка в изучении того или иного предмета.

Наиболее существенную роль в формировании положительного отношения подростков к учению играют идейно – научная содержательность учебного материала, его связь с жизнь и практикой, проблемный и эмоциональный характер изложения, организация поисковой познавательной деятельности, дающей учащимся возможность переживать радость самостоятельных открытий, вооружение подростков рациональными приемами учебной работы, являющимися предпосылкой для достижения успеха.

Другая форма выражения мотивов учения – наличие учебных интересов. Учебные интересы, как правило, избирательны. Учебный интерес зависит от того, насколько связан материал с внеучебными интересами, насколько ясно и понятно излагает материал учитель, насколько активны и разнообразны методы обучения.

Все эти особенности способствуют целенаправленному восприятию новых, современных средств обучения.

Срок реализации

Проект «Робототехника - первый шаг к открытиям» рассчитан на 1 год.

Общая характеристика учебного курса

«Истинная цель просвещения не в том, чтобы сообщить людям определенную сумму сведений по различным наукам, а в том, чтобы пробудить в каждом человеке творца, духовно активную личность, - и в этом счастье»

М.В.Ломоносов

Программа рассчитана на 35 часов и адаптирована под Конструктор Mindstorms EV 3.

Конструктор Лего предоставляет ученикам возможность приобретать важные знания, умения и навыки в процессе создания, программирования и тестирования роботов. «Мозгом» робота L ego M indstorms является микрокомпьютер L ego NXT, делающий робота программируемым, интеллектуальным, способным принимать решения. Для связи между компьютером и NXT можно использовать также беспроводное соединение Bluetooth. На NXT имеется три выходных порта для подключения электромоторов или ламп, помеченные буквами А, В и С. С помощью функции NXT Program (Программы NXT) можно осуществлять прямое программирование блока NXT без обращения к компьютеру. Датчики получают информацию от микрокомпьютера N X T .

Конструктор Лего и программное обеспечение к нему предоставляет прекрасную возможность учиться ребенку на собственном опыте. Такие знания вызывают у детей желание двигаться по пути открытий и исследований, а любой признанный и оцененный успех добавляет уверенности в себе. Обучение происходит особенно успешно, когда ребенок вовлечен в процесс создания значимого и осмысленного продукта, который представляет для него интерес. Важно, что при этом ребенок сам строит свои знания, а учитель лишь консультирует его.

В окружающем нас мире очень много роботов: от лифта в вашем доме до производства автомобилей, они повсюду. Конструктор Mindstorms EV 3 приглашает ребят войти в увлекательный мир роботов, погрузиться в сложную среду информационных технологий.

Программное обеспечение отличается дружественным интерфейсом, позволяющим ребенку постепенно превращаться из новичка в опытного пользователя. Каждый урок - новая тема или новый проект. Модели собираются либо по технологическим картам, либо в силу фантазии детей. По мере освоения проектов проводятся соревнования роботов, созданных группами.

В конце года в творческой лаборатории группы демонстрируют возможности своих роботов.

Можно выделить следующие этапы обучения:

І этап – начальное конструирование и моделирование. Очень полезный этап, дети действуют согласно своим представлениям, и пусть они «изобретают велосипед», это их велосипед, и хорошо бы, чтобы каждый его изобрел.

На этом этапе ребята еще мало что знают из возможностей использования разных методов усовершенствования моделей, они строят так, как их видят. Задача учителя – показать, что существуют способы, позволяющие сделать модели, аналогичные детским, но быстрее, мощнее. В каждом ребенке сидит дух спортсмена, и у него возникает вопрос: «Как сделать, чтобы победила моя модель?»

Вот здесь можно начинать следующий этап.

ІІ этап – обучение. На этом этапе ребята собирают модели по схемам, стараются понять принцип соединений, чтобы в последующем использовать. В схемах представлены очень грамотные решения, которые неплохо бы даже заучить. Модели получаются одинаковые, но творчество детей позволяет отойти от стандартных моделей и при создании программ внести изменения, поэтому соревнования должны сопровождаться обсуждением изменений, внесенных детьми. Дети составляют программы и защищают свои модели. Повторений в защитах быть не должно.

ІІІ этап – практическое конструирование. Узнав много нового на этапе обучения, ребята получают возможность применить свои знания и создавать сложные проекты.

Круг возможностей их моделей очень расширяется. Вот теперь уместны соревнования и выводы по итогам соревнований – какая модель сильнее и почему. Насколько механизмы, изобретенные человечеством, облегчают нам жизнь.

Во время осенних каникул посещение детского фестиваля «Магия науки и творчества».

Во время зимних каникул планируется экскурсия в Нижегородский государственный технический университет им. Р.Е. Алексеева. Выпускники по специальности «Роботы и робототехнические системы » специализируются в области разработки и эксплуатации роботов и робототехнических систем.

Обучающиеся представят демонстрацию своих проектов на школьной Научно-Практической конференции «Первые шаги в науке».

Проект «Робототехника - первый шаг к открытиям» позволит обучающимся принять участие в соревнованиях по робототехнике и интеллектуальным системам «Добро пожаловать в будущее».

При разработке и отладке проектов учащиеся делятся опытом друг с другом, что очень эффективно влияет на развитие познавательных, творческих навыков, а также самостоятельность школьников. Таким образом, ЛЕГО, являясь дополнительным средством при изучении курса информатики, позволяет учащимся принимать решение самостоятельно, применимо к данной ситуации, учитывая окружающие особенности и наличие вспомогательных материалов. И, что немаловажно, - умение согласовывать свои действия с окружающими, т.е. – работать в команде.

Методы достижения цели

    разработка и реализация программы «Робототехника – первый шаг к открытиям»;

    различные формы организации занятий: семинары-практикумы, лабораторные практикумы, обучающие сессии, конкурсные мероприятия;

    интерактивные методы обучения, способствующие развитию критического мышления и вовлечению учащихся в различные виды деятельности;

    методы активного обучения, направленные на моделирование предметного и социального содержания учебной деятельности;

    лабораторно-практический контроль и самоконтроль;

    создание ситуации успеха.

Смета расходов

п/п

Наименование оборудования

Количество

Приблизительная стоимость

LEGO М indstorms EV 3 на 8 учеников – полный комплект оборудования (для учащихся)

119 790 руб

LEGO М indstorms EV 3 личный – полный комплект оборудования (для учителя)

37 040 руб

Датчик света EV 3 45506 (самый необходимый соревновательный элемент)

8 100 руб

Аккумуляторную батарею EV3 45501

24 720 руб

Итого:

189 650 руб

Анализ рисков

    несоответствие мотивации обучающихся в использовании роботов образовательным задачам;

    возможное отставание уровня ответственности отдельных учащихся за результаты своего собственного образования по сравнению с предполагаемыми результатами.

Для минимизации данных рисков необходимо правильно активизировать учебно-мотивационную деятельность посредством целенаправленного использования средств информатизации.

Ожидаемые результаты

После завершения курса обучения:

Обучающийся будет знать:

    конструкцию, органы управления и дисплей EV 3;

    датчики EV3 ;

    сервомотор EV3 ;

    интерфейс программы Lego Mindstorms EV3;

    основы программирования, программные блоки.

Обучающийся будет уметь:

    структурировать поставленную задачу и составлять план ее решения;

    использовать приёмы оптимальной работы на компьютере ;

    извлекать информацию из различных источников;

    составлять алгоритмы обработки информации;

    ставить задачу и видеть пути её решения;

    разрабатывать и реализовывать проект;

    проводить монтажные работы, наладку узлов и механизмов;

    собирать робота, используя различные датчики;

    программировать робота.

Все описанное выше должно позволить сформулировать у выпускников школы информационную компетентность, использовать полученные знания при изучении других предметов, создавать в урочной и внеурочной деятельности по информатике развивающую образовательную среду, которая повлечет повышение качества знаний учащихся.

Выпускники школы в будущем смогут проявить свои умения возможно при работе и на нашем градообразующем предприятии ОАО ВМЗ.

Выводы

Современный курс школьной информатики с включением в него робототехники – «точка роста» информатизации образования, он как ни один другой предмет нацелен на подготовку учащихся к жизни в информационном обществе.

Процессы обучения и воспитания не сами по себе развивают человека, а лишь тогда, когда они имеют деятельностные формы и способствуют формированию тех или иных типов деятельности.

Такую стратегию обучения легко реализовать в образовательной среде ЛЕГО, которая объединяет в себе специально скомпонованные для занятий в группе комплекты ЛЕГО, тщательно продуманную систему знаний для детей и четко сформулированную образовательную концепцию.

Однако курс «Робототехника – первый шаг к открытиям» не является чем-то однажды написанным и далее живущим в законченном виде. Он может видоизменяться из года в год. Непрерывность модификации материалов этого курса – естественный процесс. Это требование времени, ведь информационные и компьютерные технологии, все, что с ними связано, переживают взрывообразное развитие.

Привлечение школьников к исследованиям в области робототехники, обмену технической информацией и начальными инженерными знаниями, развитию новых научно-технических идей позволит создать необходимые условия для высокого качества образования, за счет использования в образовательном процессе новых педагогических подходов и применение новых информационных и коммуникационных технологий. Понимание феномена технологии, знание законов техники, позволит выпускнику школы соответствовать запросам времени и найти свое место в современной жизни.

Список литературы и интернет – источников

    Каталог сайтов по робототехнике - полезный, качественный и наиболее полный сборник информации о робототехнике. [Электронный ресурс] - Режим доступа: свободный .

    Комарова Л. Г. «Строим из LEGO» (моделирование логических отношений и объектов реального мира средствами конструктора LEGO). - М.; «ЛИНКА - ПРЕСС», 2001.

    ПервоРобот LEGO® WeDoTM - книга для учителя (Электронный ресурс).

    Бухмастова Е.В., Шевалдина С.Г., Горшков Г.А. Методическое пособие «Использование Лего-технологий в образовательной деятельности» (опыт работы межшкольного методического центраг. Аши) – Челябинск: РКЦ, 2009.-59 с.

    Григорьев Д.В., Степанов П.В. Внеурочная деятельность школьников. Методический конструктор – М: Просвещение, 2011 http://www.membrana.ru -Люди. Идеи. Технологии;

    –Роботы и робототехника;

    Робототехника и Образование

ВВЕДЕНИЕ

Современные дети живут в эпоху активной информатизации и роботостроения. Согласно реализации Указа Президента РФ «О стратегии развития информационного общества в Российской Федерации на 2017 - 2030 годы» утверждена Программа «Цифровая экономика Российской Федерации». Основные сквозные цифровые технологии, входящие в Программу: компоненты робототехники и сенсорики; нейротехнологии и искусственный интеллект; и др. Основными целями направления, касающегося кадров и образования, являются: создание ключевых условий для подготовки кадров цифровой экономики; совершенствование системы образования, которая должна обеспечивать цифровую экономику компетентными кадрами.

Безусловно, государство, современное общество испытывают острую потребность в высококвалифицированных специалистах, обладающих высокими интеллектуальными возможностями. Поэтому столь важно, начиная уже с дошкольного возраста формировать и развивать техническую пытливость мышления, аналитический ум, формировать качества личности, обозначенные федеральными государственными образовательными стандартами.

Поэтому важная задача дошкольного образования сегодня - сформировать у ребенка интерес к изобретательской и рационализаторской, исследовательской деятельности, к техническому творчеству.

Психолого-педагогические исследования (Л.С. Выготский, А.В. Запорожец, Л.А. Венгер, Н.Н. Поддъяков, Л.А. Парамонова и др.) показывают, что наиболее эффективным способом развития склонности у детей к техническому творчеству, зарождения творческой личности в технической сфере является практическое изучение, проектирование и изготовление объектов техники, самостоятельное создание детьми технических объектов, обладающих признаками полезности или субъективной новизны, развитие которых происходит в процессе специально организованного обучения.

Но, к сожалению, возможности дошкольного возраста в развитии технического творчества, на сегодняшний день используются недостаточно.

Обучение и развитие в ДОО можно реализовать в образовательной среде с помощью LEGO-конструкторов и робототехники, способствующих формированию у детей конструктивно-технических способностей. Под конструктивно-техническими способностями понимают способность к пониманию вопросов, связанных с техникой, с изготовлением технических устройств, к техническому изобретательству. Эти умения имеют важное значение в развитии образного мышления, пространственного воображения, умения представлять предмет в целом и его части по плану, чертежу, схеме. Эффективным инструментом в решении этой проблемы является использование детского технического конструирования, которое позволяет реализовать почти все принципы, предъявленные ФГОС ДО к организации дошкольного образования.

Актуальность LEGO -технологии и робототехники значима в свете внедрения ФГОС, так как:

  • являются великолепным средством для интеллектуального развития дошкольников, обеспечивающих интеграцию образовательных областей (Речевое, Познавательное и Социально-коммуникативное развитие);
  • позволяют педагогу сочетать образование, воспитание и развитие дошкольников в режиме игры (учиться и обучаться в игре);
  • формируют познавательную активность, способствует воспитанию социально-активной личности, формирует навыки общения и сотворчества;
  • объединяют игру с исследовательской и экспериментальной деятельностью, предоставляют ребенку возможность экспериментировать и созидать свой собственный мир, где нет границ.

Имея сформированное представление и интерес к технике и робототехнике, дети смогут найти достойное применение своим знаниям и талантам на последующих ступенях обучения.

В БУ «Советский политехнический колледж» создана лаборатория по специальности 44.02.01 Дошкольное образование на базе МАДОУ «Радуга» г. Советский. В рамках деятельности, которой, реализуется проект "Внедрение LEGO - конструирования и робототехники в образовательном процессе детского сада, как средство приобщения к техническому творчеству и формированию первоначальных технических навыков".

Постановка и обоснование проблемы инновационного проекта

В реальной практике дошкольных образовательных учреждений остро ощущается необходимость в организации работы по вызыванию интереса к техническому творчеству и первоначальных технических навыков. Однако отсутствие необходимых условий в детском саду не позволяет решить данную проблему в полной мере. Анализ работы учреждения, позволил выявить противоречия, которые и были положены в основу данного проекта, в частности противоречия между:

  • Требованиями ФГОС, где указывается на активное применение конструктивной деятельности с дошкольниками, как деятельности, способствующей развитию исследовательской и творческой активности детей и недостаточным оснащением детского сада конструкторами LEGO;
  • Необходимостью создания в ДОУ инновационной предметно-развивающей среды, в том числе способствующей формированию первоначальных технических навыков у дошкольников и отсутствием Программы работы с детьми с конструкторами нового поколения;
  • Возрастающими требованиями к качеству работы педагога и недостаточным пониманием педагогами влияния LEGO- технологий на развитие личности дошкольников;

Выявленные противоречия указывают на необходимость и возможность внедрения LEGO - конструирования и робототехники в образовательном процессе детского сада, что позволит создать благоприятные условия для приобщения дошкольников к техническому творчеству и формированию первоначальных технических навыков.

Сроки реализации проекта: сентябрь 2017 года - август 2018 года.

Цель проекта : внедрение LEGO-конструирования и робототехники в образовательный процесс ДОО.

Задачи проекта :

  • Обеспечить целенаправленное применение LEGO- конструктов в образовательном процессе детского сада:
  • Организовать целенаправленную работу по применению LEGO- конструкторов в ДОУ по конструированию;
  • Разработать и апробировать дополнительную образовательную программу технической направленности «LEGO КОНСТРУКТОР» с использованием программируемых конструкторов LEGO для детей старшего дошкольного возраста;
  • Развивать эффективную, специализированную образовательную среду начального технического творчества с целью поддержки разнообразия детства;
  • Повысить IT компетентность педагогов за счет обучения LEGO - технологии.
  • Повысить компетентность родителей в вопросах развития начального технического творчества через привлечение к совместной образовательной деятельности с детьми и реализацию детско-родительских проектов.
  • Разработать механизм внедрения LEGO-конструирования и робототехники, как дополнительной образовательной услуги.

Новизна проекта заключается в адаптации конструкторов нового поколения: Lego Wedo, программируемых конструкторов в образовательный процесс ДОУ для детей старшего дошкольного возраста.

Гипотеза: Мы предполагаем, что организация в ДОО занятий по Lego-конструированию и робототехнике способствует формированию у детей научно-технического и творческого потенциала, приобретению практических умений по сборке роботов различных модификаций.

Методы исследования:

  • Теоретические: анализ психологических и педагогических работ по проблеме исследования;
  • Эмпирические: наблюдение за деятельностью детей на занятиях, изучение продуктов детской деятельности; педагогический эксперимент (констатирующий этап);
  • Интерпретационно-описательные: качественный и количественный анализ результатов исследования.

Теоретическая значимость состоит в том, что систематизированы и обобщены знания по проблеме формирования конструктивно – модельных и первоначальных технических навыков у детей старшего дошкольного возраста.

Ожидаемая практическая значимость проекта :

Решение поставленных в проекте задач позволит организовать в детском саду условия, способствующие организации творческой продуктивной деятельности дошкольников на основе LEGO -конструирования и робототехники в образовательном процессе, что позволит заложить на этапе дошкольного детства первоначальные технические навыки. В результате, создаются условия не только для расширения границ социализации ребёнка в обществе, активизации познавательной деятельности, демонстрации своих успехов, но и закладываются истоки профориентационной работы, направленной на пропаганду профессий инженерно- технической направленности.

В результате освоения программ технического творчества у детей дошкольного возраста формируются целостные представления о современном мире и роли техники и технологии в нем, умения объяснять объекты и процессы окружающей действительности, приобретается опыт созидательной и творческой деятельности, опыт познания и саморазвития.

Реализация целей и задач данного проекта позволит повысить интерес детей к выбору профессий, актуальных для дальнейшего развития нашей страны и региона в частности.

ОСНОВНАЯ ЧАСТЬ

Основная идея проекта заключается в реализации более широкого и глубокого содержания образовательной деятельности в детском саду с использованием конструкторов LEGO.

Реализация идеи проекта с использованием LEGO - технологии проходит в нескольких направлениях.

В рамках обязательной части общеобразовательной программы ДОО предполагается реализация непосредственной образовательной деятельности с использованием конструкторов LEGO, начиная с младшего дошкольного возраста (возрастная категория с 3 до 7 лет). Системность и направленность данного процесса обеспечивается включением LEGO- конструирования в регламент образовательной деятельности детского сада, реализуется в рамках образовательной области «Познание», раздела «Конструирование», на основе методических разработок М.С. Ишмаковой «Конструирование в дошкольном образовании в условиях введения ФГОС».

LEGO - конструирование начинается с трехлетнего возраста: детям вторых младших групп предложен конструктор LEGO DUPLO. Дети знакомятся с основными деталями конструктора LEGO DUPLO, способами скрепления кирпичиков, у детей формируется умение соотносить с образцом результаты собственных действий в конструировании объекта.

В средней группе (с 4 до 5 лет) дети закрепляют навыки работы с конструктором LEGO, на основе которых у них формируются новые. В этом возрасте дошкольники учатся не только работать по плану, но и самостоятельно определять этапы будущей постройки, учатся ее анализировать. Добавляется форма работы - это конструирование по замыслу. Дети свободно экспериментируют со строительным материалом.

В старшей группе (с 5 до 6 лет) конструктивное творчество отличается содержательностью и техническим разнообразием, дошкольники способны не только отбирать детали, но и создавать конструкции по образцу, схеме, чертежу и собственному замыслу.

В подготовительной группе (с 6 до 8 лет) формирование умения планировать свою постройку при помощи LEGO – конструктора становится приоритетным. Особое внимание уделяется развитию творческой фантазии детей: дети конструируют по воображению по предложенной теме и условиям. Таким образом, постройки становятся более разнообразными и динамичными.

Конструирование – один из излюбленных видов детской деятельности. Отличительной особенностью такой деятельности является самостоятельность и творчество. Как правило, конструирование завершается игровой деятельностью. Созданные LEGO -постройки дети используют в сюжетно-ролевых играх, в играх-театрализациях, используют LEGO -элементы в дидактических играх и упражнениях, при подготовке к обучению грамоте, ознакомлении с окружающим миром. Так, последовательно, шаг за шагом, в виде разнообразных игровых, интегрированных, тематических занятий дети развивают свои конструкторские навыки, у детей развивается умение пользоваться схемами, инструкциями, чертежами, развивается логическое мышление, коммуникативные навыки.

1 ступень - «Новичок» для детей 5-6 лет. Дети знакомятся с уникальными возможностями моделирования построек в программе LEGO - WеDо. Организация образовательной деятельности, на данном этапе, выстраивается в индивидуальных и подгрупповых формах работы с детьми;

Активное обучение педагогов LEGO -технологии, как за счет курсовой подготовки, так и организации обучающих семинаров-практикумов, мастер - классов, открытых занятий и т.д.

А также открытие LEGO – центра. LEGO – центр – это учебное помещение детского сада, оснащенное образовательными робототехническими конструкторами для сборки робота маленькими детьми без навыков компьютерного программирования (чтобы оживить робота, используются специальные карты, с помощью которых осуществляется программирование робота).

Зонирование кабинета предполагает:

Первая часть – для педагога-организатора, где можно хранить методическую литературу, планы работы с детьми, необходимый материал для занятий; рабочий стол для педагога.

Во второй части (по периметру кабинета) размещены стеллажи для контейнеров с конструктором.

В третьей части (центр кабинета)– для проведения совместной деятельности с детьми и родителями. Интерактивная доска и компьютер, для демонстрации видео материала, технологического процесса, освоения основ программирования.

Таблица 1.Календарный план реализации проекта

№п/п

Этап

Наименование мероприятия

Краткое конкретное описание содержания мероприятия

Сроки

Ожидаемые результаты

Подготовительный

Выявление проблемы, создание нормативной базы

проекта

Изучение возможностей внедрения образовательной робототехники в образовательный процесс ДОУ.

Анализ состояния специализированной образовательной среды начального технического творчества, выявление проблемы.

Разработка инновационного проекта.

сентябрь - октябрь 2017.

Изучение и подбор нормативных документов

Изучение возможности внедрения «начального технического творчества» в образовательный процесс

Анализ имеющихся условий, организация начального-материально-техническое обеспечения Центра

ноябрь- декабрь 2017.

Утверждение плана. Формирование программы дополнительного образования по конструированию с использованием конструкторов Lego (с приложениями перспективного тематического планирование по 2 возрастным группам; ряда конспектов занятий).

Организация начального материально-технического обеспечения LEGO – центра.

Утверждение проекта

Постановка цели, задач, разработка плана реализации проекта

Основной (внедренческий)

Создание ресурсной базы для работы с детьми по данному направлению

Создание среды, обеспечивающей удовлетворение потребностей детей, родителей, педагогов в развитии интереса к инженерно-техническим и информационным технологиям, научно-исследовательской и конструкторской деятельности

январь- май 2018г.

Организация Центра начального технического творчества в ДОУ, с использованием конструкторов Lego.

Использование организационно-смысловых ресурсов развивающей образовательной среды

Организация форм работы с воспитанниками по техническому творчеству.

Практическое осуществление экспериментальной деятельности: организация работы LEGO - центра, подведение и анализ промежуточных результатов эксперимента; осуществление корректировки программы экспериментальной деятельности.

Повышение эффективности работы по развитию конструктивных способностей.

Использование разнообразных форм в работе с родителями

Реализация детско-родительских проектов, проведение мастер-классов по работе с детьми.

Повышение компетенции родителей в вопросах развития у детей интереса к техническому творчеству

Заключительный (обобщающий)

Систематизация и обобщение полученных результатов, их статистическая обработка; осуществление презентации полученных результатов.

Проведение мероприятий для педагогов дошкольных образовательных организаций. Распространение опыта работы через СМИ, профессиональные сайты сети Интернет.

Июнь – август

2018 г.

Использование опыта МАДОУ «Радуга» в дошкольных образовательных организациях.

Необходимые ресурсы, используемые в проекте :

  • Воспитанники детского сада;
  • Педагоги детского сада;
  • Родители воспитанников;
  • LEGO – центр, оборудованный конструкторами нового поколения.

На данный момент завершена реализация I Организационного этапа проекта «Внедрение LEGO - конструирования и робототехники в образовательном процессе детского сада, как средство приобщения к техническому творчеству и формированию первоначальных технических навыков»:

  • Выявлена проблема исследования, создана нормативная база проекта;
  • Разработана рабочая программа дополнительного образования по конструированию с использованием конструкторов Lego для детей старшего дошкольного возраста на 2017 – 2018 уч.г;
  • Сформирована материально-техническая база (Интерактивная доска SMART board, стационарный компьютер, 10 ноутбуков, 10 базовых наборов Lego Education WeDo, программное обеспечение Lego WeDo).

Для реализации II Внедренческого этапа проекта сформированы 2 группы по 10 детей 5-7 лет. Занятия проводятся 4 раза в неделю подгруппой по 10 человек, продолжительность 30 минут.

На сегодняшний день согласно календарно-тематическому планированию обучение проходило в три этапа:

1. Знакомство с конструктором LEGO Education WeDo и инструкциями по сборке, изучение технологии соединения деталей.

2. Сборка простых конструкции по образцу.

3. Знакомство детей с языком программирования и пиктограммами, а также правилами программирования в компьютерной среде.

Планируется работа по усовершенствованию предложенных разработчиками моделей, создание и программирование моделей с более сложным поведением.

Методы оценки

  • Проведение исследования результативности посредством итогового оценочного материала, подведение и анализ промежуточных результатов эксперимента, включающего в себя исследование технического творчества воспитанников;
  • Заинтересованность дошкольников в конструировании, активность в конструкторской деятельности, участие и заинтересованность родителей в совместной творческой деятельности;
  • Оснащенность LEGO - центра, позволит определить качество достигнутых результатов экспериментальной деятельности, определить эффективность и результативной работы, выявить трудности и проблемы, что в целом обеспечит положительный результат эксперимента.

Основными целями исследования результативности эксперимента является выявление педагогической эффективности и социальных последствий данного эксперимента на этапе его реализации и распространения результатов, а также накопление образцов передового педагогического опыта.

Под педагогической эффективностью эксперимента будем понимать получение планируемых в эксперименте результатов при минимуме негативных последствий или издержек, т.е. степень достижения планируемых результатов, соответствия реальных достигаемых образовательных результатов прилагаемым усилиям.

Основные задачи исследования результативности :

  • Отбор системы показателей и измерителей, на основе которых будет проводиться исследование результативности образовательных достижений;
  • Проведение систематических обследований одной и той же экспериментальной группы с целью выявления динамики изменений значений основных показателей качества образовательных достижений.

В качестве критериев эффективности эксперимента будут использованы достижения планируемых результатов обучения; сохранение состояния здоровья детей.

Но при реализации данного проекта, как и любой другой экспериментальной деятельности, можно предвидеть некоторые риски , на которые следует обратить внимание:

1. Недостаточное финансирование;

2. Отсутствие партнёрских отношений с родителями может привести к незаинтересованности родителей в совместных творческих проектах.

Методы устранения рисков.

1. Поиск потенциальных партнеров проекта, налаживание сетевого взаимодействия в направлении технического творчества воспитанников, предполагающее дальнейшее обучение в данном направлении и совместные творческие проекты;

2. Активизация деятельности родителей по проблеме через активные формы взаимодействия, систематическое информирование об успешности дошкольников, выражении своевременной благодарности (благодарственные письма, информирование на стендах, сайте ДОУ и т.д.);

Для реализации дополнительной образовательной программы в МАДОУ «Радуга» г. Советский было сделано следующее:

Оборудован кабинет с интерактивной доской, стационарным компьютером для педагога. Для проведения занятий на каждого учащегося предоставлялся один набор конструктора Lego Education WeDo и компьютер для программирования. Создана комфортная, благоприятная, безопасная обстановка для детей. Она оснащена разнообразной коллекцией конструкторов ЛЕГО: разных по конструктивной направленности, многофункциональных или используемых для создания каких-то определенных моделей. Есть контейнеры для деталей, оформлены папки с образцами построек, есть стенды с образцами.

Конструкторы типа LEGO для образования спроектированы таким образом, чтобы ребенок в процессе занимательной игры смог получить максимум информации о современной науке и технике и освоить ее. Наборы конструкторов типа LEGO предназначены как для самостоятельной, так и для групповой и подгрупповой образовательной деятельности. При помощи наглядно-действенного метода детей ознакомили с конструкторскими свойствами деталей LEGO, возможностями их скрепления, комбинирования, оформления, дети овладевали конструктивными элементами и программным обеспечением. Занятия состояли из двух частей: в первой части занятия изучали теорию, повторение знаний из пройденного материала или знакомство с неизученными вопросами, на втором - создание моделей и выполнение задания по предложенной схеме, либо по собственному замыслу. При изучении способов скрепления кирпичиков, у детей формируется умение соотносить с образцом результаты собственных действий в конструировании объекта.

Методика организации занятий с детьми старшего дошкольного возраста.

На первом занятии обучения каждому ребенку дают Г-образную фигуру, сделанную из деталей конструктора, и говорят: «Это - недостроенная конструкция чего-то. Я начала строить, а вы отгадайте, что я хотела сделать, и достройте». Дети вначале рассматривают фигуру, переворачивают ее, иногда по несколько раз; некоторые из них берут другие более мелкие детали и приставляют к ней и т.д. И только после такого «практического» обдумывания (а воспитателю важно не торопить детей с ответом) называют то, что, по их мнению, начал делать воспитатель. И далее, путем достраивания заданной основы, дети создают разные, как правило, структурно простые конструкции: самолет, скамейку, домик и т.п. Воспитатель одобряет детские решения, а потом говорит, что она начала делать и не самолет, и не скамейку, а что-то другое. Это вызывает у детей удивление. Воспитатель предлагает подумать, что же это могло быть. Дети начинают либо перестраивать свою модель, видоизменять ее, либо разбирать и конструировать заново. В результате дети на одной Г-образной основе могут создать несколько разных конструкций.

На следующих занятиях в качестве основы недостроенной конструкции можно давать другие фигуры: Т- и П-образные, а также длинный тонкий и короткий толстый бруски, составленные из нескольких деталей конструктора. Задачи повторяются.

Уже через несколько занятий дети действуют более уверенно, а некоторые из них предлагают сразу 2–3 варианта конструкции. При этом заданная фигура остается основой, которую дети дополняют для получения новой конструкции. Иначе говоря, дети осваивают способ «опредмечивания» основы как способ построения образа будущей конструкции. Так же дети начинают использовать заданную фигуру не только как основу, но и как деталь новой конструкции. Например, длинный брусок - это труба большого парохода или столб, на котором держатся карусели, и т.п. Это говорит о том, что замысел (образ) строится способом «включения» заданной фигуры не в качестве основы, как было раньше, а как элемента общей конструкции. А это - показатель более высокого уровня развития воображения, творчества.

Работа с родителями

Роль родителей в развитии конструктивных способностей детей дошкольного возраста является немаловажной. В МАДОУ проводились тематические выставки по LEGO -конструированию, в рамках которых дети совместно с родителями создавали постройки на заданную тему (например, « Города», «Подарки» «Достопримечательности») и приносили в МАДОУ, чтобы не просто продемонстрировать свое творение, но и рассказать – что это они создали, откуда взяли образец и чем именно привлекла их тема.

Также для родителей проводились открытые образовательные ситуации, на которых они видели, как ведется образовательная деятельность с применением конструкторов типа LEGO, помогали детям в создании моделей. Включение семей воспитанников в образовательную деятельность МАДОУ расширяет пространство, объединяет интересы педагогов, родителей.

Таблица 2. Показатели результативности проекта

Критерии оценки

Не называет детали, не может соотнести название с формой

Называет только основные детали

Знает название всех деталей, легко соотносит название с формой

не знает модели, их составных частей и принципов работы

называет модели, их составные части и принципы работы с помощью педагога

знает модели, их составные части и принципы работы

Программирование

Не может собрать программу к модели конструктора

Программирует модель конструктора при помощи педагога

Самостоятельно программирует модель конструктора

Конструирование по образцу

Не может конструировать по образцу

Конструирует по образцу с помощью педагога

Конструирует по образцу без помощи педагога

Конструирование по схеме

Не может конструировать по схеме

Конструирует по схеме с помощью педагога

Конструирует по схеме без помощи педагога

Не может конструировать по собственному замыслу

Конструирует по собственному замыслу с помощью педагога

Конструирует по собственному замыслу без помощи педагога

Показатели: «Низкий уровень» - от 0 до 4 баллов (круг интересов к данному виду деятельности довольно узок, фрагментарный); «Средний уровень» - от 5 до 8 баллов (ребенок обладает творческими способностями и стремится к самообразованию, жаждет знаний в данной области); «Высокий уровень» - от 9 до 12 баллов (ребенок эрудирован, ценностные ориентации разнообразны, постоянно стремится к знаниям).

Таблица 3. Промежуточные результаты эксперимента. Подгруппа №1

№ п/п

Ф. И. ребенка

Название деталей конструктора

Знание моделей, их составных частей и принципов работы

Программирование

Конструирование по образцу

Конструирование по схеме

Конструирование по собственному замыслу

Итоговый результат, уровень усвоения

Дырин Матвей

низкий

Красноперов Артем

средний

Предит Валерия

средний

Сушинских Милана

средний

Корепанов Денис

высокий

Комков Иван

средний

Савиных Елизавета

средний

Эрлихман Артем

средний

Смольняков Николай

средний

Король Алексей

Высокий

Рисунок 1. Диаграмма промежуточных результатов эксперимента. Подгруппа № 1.

На данном этапе реализации проекта, исходя из промежуточных результатов, можно сказать, что в основном преобладает средний уровень развития конструктивно - модельных навыков у детей старшего дошкольного возраста. У одного воспитанника низкий уровень освоения результата в связи с редкой посещаемостью, нарушением зрения и рассеяностью внимания на занятиях. У двух воспитанников высокий уровень освоения программы, они с легкостью осваивают программу по заданной тематике и создают модели по собственному замыслу. У большинства детей проявляется большой интерес к процессу создания объектов, он становится более целенаправленным и длительным.

Целенаправленное и систематическое обучение детей дошкольного возраста конструированию способствует формированию умения учиться, добиваться результатов, получать новые знания в окружающем мире, закладывать первые предпосылки учебной деятельности.

Создание проблемных ситуаций повлияло на развитие исследовательских, экспериментальных, проектных навыков детей дошкольного возраста, способствовало совершенствованию их социально-коммуникативных умений.

Важно, что эта работа не заканчивается в детском саду, а имеет продолжение в школе. Конструирование и робототехника направление работы новое, инновационное. Тем самым привлекая внимание детей и родителей. Отличная возможность дать шанс ребёнку проявить конструктивные и творческие способности, а детскому саду приобщить как можно больше детей дошкольного возраста к техническому творчеству.

Заключение :

В результате успешной реализации проекта планируется достижение следующих результатов:

1. Создание в ДОУ новых условия обучения и развития дошкольников, через организацию целенаправленного образовательного процесса с использованием LEGO -конструирования, в рамках реализации основной части образовательной программы детского сада.

2. Разработка и внедрение дополнительной образовательной программы в ДОУ по техническому конструированию.

3. Выраженная активность родителей в совместной образовательной деятельности с детьми по приобщению к техническому творчеству.

4. Повышение заинтересованности и компетентности использования программируемых LEGO- конструктов у преподавателей ДОУ.

В результате обобщения работы над проектом ожидается получить следующие продукты, которые могут быть использованы в работе дошкольных учреждений и учреждениями дополнительного образования:

1. Программа дополнительного образования по конструированию с использованием конструкторов LEGO (с приложениями перспективного тематического планирование; ряд конспектов занятий);

2. Модель Lego- центра (с методическими рекомендациями по организации работы в Lego центре: правила работы в Lego центре, схема-алгоритм работы с конструкторами Lego, технологические карты сборки конструкторских моделей, рабочая тетрадь дошкольника по образовательной робототехнике;

3. Совместные детско-родительские проекты, мастер-классы.

Реализация проекта значима для развития системы образования, так как способствует:

  • Обеспечению работы в рамках ФГОС;
  • Формированию имиджа детского образовательного учреждения;
  • Удовлетворённости родителей в образовательных услугах ДОУ.

Перспективы развития

Решение поставленных в проекте задач позволит организовать в детском саду условия, способствующие организации творческой продуктивной деятельности дошкольников на основе LEGO -конструирования и робототехники в образовательном процессе, что позволит заложить на этапе дошкольного детства начальные технические навыки. В результате, создаются условия не только для расширения границ социализации ребёнка в обществе, активизации познавательной деятельности, демонстрации своих успехов, но и закладываются истоки профориентационной работы, направленной на пропаганду профессий инженерно- технической направленности.

Возможности использования проекта .

Проект адресован педагогам ДОУ, педагогам дополнительного образования в рамках внедрения ФГОС ДО и всем заинтересованным лицам.

Список литературы:

  1. А. Бедфорд «Большая книга LEGO» - Манн, Иванов и Фербер, 2014 г. – 256с.
  2. М.С. Ишмакова «Конструирование в дошкольном образовании в условиях введения ФГОС» - ИПЦ Маска, 2013 г. – 100с.
  3. Лыкова И.А. Конструирование в детском саду: учебно-методическое пособие к парциальной программе «Умные пальчики».-М.: ИД «Цветной мир», 2015г. . – 176с.
  4. Е.В. Фешина «Лего - конструирование в детском саду» - М.: ТЦ «Сфера», 2018 г. – 136с.
  5. С.А. Филиппов «Робототехника для детей и родителей» – СПб.:Наука,2013г. – 319с.
  6. Ю. В. Рогов «Робототехника для детей и их родителей» под ред. В. Н. Халамова - Челябинск, 2012 – 176с.

Приложение

Аннотация к программе дополнительного образования по конструированию с использованием конструкторов LEGO

Программа «Робототехника» разработана с учетом требований Федерального государственного образовательного стандарта дошкольного образования.

Актуальность программы заключается в следующем:

Востребованность развития широкого кругозора старшего дошкольника, в том числе в естественнонаучном направлении;

Отсутствие методического обеспечения формирования основ технического творчества, навыков начального программирования;

Необходимость ранней научно – технической профессиональной ориентации. Программа отвечает требованиям направления муниципальной и региональной политики в сфере образования - развитие основ технического творчества детей в условиях модернизации образования.

Новизна программы заключается в исследовательско-технической направленности обучения, которое базируется на новых информационных технологиях, что способствует развитию информационной культуры и взаимодействию с миром технического творчества. Авторское воплощение замысла в автоматизированные модели и проекты особенно важно для старших дошкольников, у которых наиболее выражена исследовательская (творческая) деятельность.

Детское творчество - одна из форм самостоятельной деятельности ребёнка, в процессе которой он отступает от привычных и знакомых ему способов проявления окружающего мира, экспериментирует и создаёт нечто новое для себя и других.

Техническое детское творчество является одним из важных способов формирования профессиональной ориентации детей, способствует развитию устойчивого интереса к технике и науке, а также стимулирует рационализаторские и изобретательские способности.

Цель программы – развитие технического творчества и формирование научно – технической профессиональной ориентации у детей старшего дошкольного возраста средствами робототехники.

Задачи:

  • формировать первичные представления о робототехнике, ее значении в жизни человека, о профессиях связанных с изобретением и производством технических средств;
  • приобщать к научно – техническому творчеству: развивать умение постановки технической задачи, сбирать и изучать нужную информацию, находить конкретное решение задачи и материально осуществлять свой творческий замысел;
  • развивать продуктивную (конструирование) деятельность: обеспечить освоение детьми основных приёмов сборки и программирования робототехнических средств;
  • формировать основы безопасности собственной жизнедеятельности и окружающего мира: формировать представление о правилах безопасного поведения при работе с электротехникой, инструментами, необходимыми при конструировании робототехнических моделей
  • воспитывать ценностное отношение к собственному труду, труду других людей и его результатам;
  • формировать навыки сотрудничества: работа в коллективе, в команде, малой группе (в паре).

Программа основывается на следующих принципах: обогащение детского развития;

построение образовательной деятельности на основе индивидуальных особенностей каждого ребенка, при котором сам ребенок становится активным в выборе содержания своего образования, становится субъектом образования (далее - индивидуализация дошкольного образования); содействие и сотрудничество детей и взрослых, признание ребенка полноценным участником (субъектом) образовательных отношений; поддержка инициативы детей в продуктивной творческой деятельности; приобщение детей к социокультурным нормам, традициям семьи, общества и государства; формирование познавательных интересов и познавательных действий ребенка в продуктивной творческой деятельности; возрастная адекватность дошкольного образования (соответствие условий, требований, методов возрасту и особенностям развития).

Характеристики особенности развития технического детского творчества

Техническое детское творчество – это конструирование приборов, моделей, механизмов и других технических объектов. Процесс технического детского творчества условно делят на 4 этапа: постановка технической задачи, сбор и изучение нужной информации, поиск конкретного решения задачи, материальное осуществление творческого замысла.

В дошкольном возрасте техническое детское творчество сводится к моделированию простейших механизмов.

Детское творчество, как один из способов интеллектуального и эмоционального развития ребёнка, имеет сложный механизм творческого воображения, делится на несколько этапов и оказывает существенное влияние на формирование личности ребёнка.

В творческой деятельности ребёнка выделяют три основных этапа:

  1. Формирование замысла. На этом этапе у ребёнка возникает идея (самостоятельная или предложенная родителем/воспитателем) создания чего-то нового. Чем младше ребёнок, тем больше значение имеет влияние взрослого на процесс его творчества. В младшем возрасте только в 30 % случаев, дети способны реализовать свою задумку, в остальных - первоначальный замысел претерпевает изменения по причине неустойчивости желаний. Чем старше становится ребёнок, тем больший опыт творческой деятельности он приобретает и учится воплощать изначальную задумку в реальность.
  2. Реализация замысла. Используя воображение, опыт и различные инструменты, ребёнок приступает к осуществлению идеи. Этот этап требует от ребёнка умения владеть выразительными средствами и различными способами творчества (рисунок, аппликация, поделка, механизм, пение, ритмика, музыка).
  3. Анализ творческой работы. Является логическим завершением первых этапов. После окончания работы, ребёнок анализирует получившийся результат, привлекая к этому взрослых и сверстников.

Влияние детского творчества на развитие личности ребёнка

Важной особенностью детского творчества является то, что основное внимание уделяется самому процессу, а не его результату. То есть важна сама творческая деятельность и создание чего-то нового. Вопрос ценности созданной ребёнком модели отступает на второй план. Однако дети испытывают большой душевный подъём, если взрослые отмечают оригинальность и самобытность творческой работы ребёнка. Детское творчество неразрывно связано с игрой, и, порой, между процессом творчества и игрой нет границы. Творчество является обязательным элементом гармоничного развития личности ребёнка, в младшем возрасте необходимое, в первую очередь, для саморазвития. По мере взросления, творчество может стать основной деятельностью ребёнка.

Планируемые результаты реализации программы

- ребенок овладевает робото - конструированием, проявляет инициативу и самостоятельность в среде программирования LEGO WeDo , общении, познавательно-исследовательской и технической деятельности;

Ребенок способен выбирать технические решения, участников команды, малой группы;

Ребенок обладает установкой положительного отношения к робото-конструированию, к разным видам технического труда, другим людям и самому себе, обладает чувством собственного достоинства;

Ребенок активно взаимодействует со сверстниками и взрослыми, участвует в совместном конструировании, техническом творчестве имеет навыки работы с различными источниками информации;

Ребенок способен договариваться, учитывать интересы и чувства других, сопереживать неудачам и радоваться успехам других, адекватно проявляет свои чувства, в том числе чувство веры в себя, старается разрешать конфликты;

Ребенок обладает развитым воображением, которое реализуется в разных видах исследовательской и творческо-технической деятельности, в строительной игре и конструировании; по разработанной схеме с помощью педагога, запускает программы на компьютере для различных роботов;

Ребенок владеет разными формами и видами творческо-технической игры, знаком с основными компонентами конструктора LEGO WeDo; видами подвижных и неподвижных соединений в конструкторе, основными понятиями, применяемые в робототехнике различает условную и реальную ситуации, умеет подчиняться разным правилам и социальным нормам;

Ребенок достаточно хорошо владеет устной речью, способен объяснить техническое решение, может использовать речь для выражения своих мыслей, чувств и желаний, построения речевого высказывания в ситуации творческо-технической и исследовательской деятельности;

У ребенка развита крупная и мелкая моторика, он может контролировать свои движения и управлять ими при работе с Lego-конструктором;

Ребенок способен к волевым усилиям при решении технических задач, может следовать социальным нормам поведения и правилам в техническом соревновании, в отношениях со взрослыми и сверстниками;

Ребенок может соблюдать правила безопасного поведения при работе с электротехникой, инструментами, необходимыми при конструировании моделей;

Ребенок проявляет интерес к исследовательской и творческо-технической деятельности, задает вопросы взрослым и сверстникам, интересуется причинно-следственными связями, пытается самостоятельно придумывать объяснения технические задачи; склонен наблюдать, экспериментировать;

- ребенок обладает начальными знаниями и элементарными представлениями о робототехнике, знает компьютерную среду, включающую в себя графический язык программирования, создает действующие модели роботов на основе конструктора LEGO We Do по разработанной схеме; демонстрирует технические возможности роботов, создает программы на компьютере для различных роботов с помощью педагога и запускает их самостоятельно ;

- ребенок способен к принятию собственных творческо-технических решений, опираясь на свои знания и умения , самостоятельно создает авторские модели роботов на основе конструктора LEGO We Do; создает и запускает программы на компьютере для различных роботов самостоятельно, умеет корректировать программы и конструкции.

Познавательное развитие.

Изучение процесса передачи движения и преобразования энергии в машине. Идентификация простых механизмов, работающих в модели, включая рычаги, зубчатые и ременные передачи. Ознакомление с более сложными типами движения, использующими кулачок, червячное и коронное зубчатые колеса. Понимание того, что трение влияет на движение модели. Понимание и обсуждение критериев испытаний. Понимание потребностей живых существ.

Создание и программирование действующих моделей. Интерпретация двухмерных и трехмерных иллюстраций и моделей. Понимание того, что животные используют различные части своих тел в качестве инструментов. Сравнение природных и искусственных систем. Использование программного обеспечения для обработки информации. Демонстрация умения работать с цифровыми инструментами и технологическими системами.

Сборка, программирование и испытание моделей. Изменение поведения модели путём модификации её конструкции или посредством обратной связи при помощи датчиков.

Измерение времени в секундах с точностью до десятых долей. Оценка и измерение расстояния. Усвоение понятия случайного события. Связь между диаметром и скоростью вращения. Использование чисел для задания звуков и для задания продолжительности работы мотора. Установление взаимосвязи между расстоянием до объекта и показанием датчика расстояния. Установление взаимосвязи между положением модели и показаниями датчика наклона. Использование чисел при измерениях и при оценке качественных параметров.

Социально – коммуникативное развитие.

Организация мозговых штурмов для поиска новых решений. Обучение принципам совместной работы и обмена идеями, совместно обучаться в рамках одной группы. Подготовка и проведение демонстрации модели. Участие в групповой работе в качестве «мудреца», к которому обращаются со всеми вопросами. Становление самостоятельности: распределять обязанности в своей группе, проявлять творческий подход к решению поставленной задачи, создавать модели реальных объектов и процессов, видеть реальный результат своей работы.

Речевое развитие.

Общение в устной форме с использованием специальных терминов. Использование интервью, чтобы получить информацию и составить схему рассказа. Описание логической последовательности событий, создание постановки с главными героями и её оформление визуальными и звуковыми эффектами при помощи моделирования. Применение мультимедийных технологий для генерирования и презентации идей.

Приемы и методы организации занятий.

I Методы организации и осуществления занятий

1. Перцептивный акцент: словесные методы, наглядные методы, практические методы

2. Гностический аспект: иллюстративно - объяснительные методы, репродуктивные методы, проблемные методы (методы проблемного изложения) дается часть готового знания, эвристические (частично-поисковые) большая возможность выбора вариантов, исследовательские – дети сами открывают и исследуют знания.

3. Логический аспект: индуктивные методы, дедуктивные методы, продуктивный, конкретные и абстрактные методы, синтез и анализ, сравнение, обобщение, абстрагирование, классификация, систематизация, т.е. методы как мыслительные операции.

4. Управленческий аспект: методы учебной работы под руководством учителя, методы самостоятельной учебной работы учащихся.

Модули программы.

Зачем человеку роботы? (знакомство с робототехникой)

Основной предметной областью является познания в области естественно – научных представлений о роботах, их происхождении, предназначении и видах, правилах робототехники, особенностях конструирования. Дети знакомятся с краткой историей робототехники, знаменитыми людьми в этой области, различными видами робототехнической деятельности: конструирование, программирование, соревнования, подготовка видео обзора.

Модуль. Как научить робота двигаться? (основы программирования)

Основной предметной областью являются естественно – научные представления о приемах сборки и программирования. Этот модуль используется как справочный материал при работе с комплектом заданий. Он изучается и на отдельных занятиях, чтобы познакомить детей с основами построения механизмов и программирования. Дынный модуль формирует представления детей о взаимосвязи программирования и механизмов движения: - что происходит после запуска и остановки цикла программы? Как изменить значение входных параметров программы. Какие функции выполняет блоки программы.

Модуль «Забавные механизмы»

Основной предметной областью является естественно - научные представления. На занятиях дети знакомятся с ременными передачами, экспериментируют со шкивами разных размеров, прямыми и перекрёстными ременными передачами, исследуют влияние размеров зубчатых колёс на вращение волчка. Занятия посвящено изучению принципа действия рычагов и кулачков, а также знакомству с основными видами движения. Дети изменяют количество и положение кулачков, используя их для передачи усилия.

Модуль «Зоопарк»

Модуль раскрывает перед детьми понимание того, что система должна реагировать на свое окружение. На занятиях «Голодный аллигатор» дети программируют аллигатора, чтобы он закрывал пасть, когда датчик расстояния обнаруживает в ней «пищу». На занятии «Рычащий лев» ученики программируют льва, чтобы он сначала садился, затем ложился и рычал, учуяв косточку. На занятии «Порхающая птица» создается программа, включающая звук хлопающих крыльев, когда датчик наклона обнаруживает, что хвост птицы поднят или опущен. Кроме того, программа включает звук птичьего щебета, когда птица наклоняется, и датчик расстояния обнаруживает приближение земли.

Модуль «Человекоподобные роботы (андроиды)»

Модуль направлен на развитие математических способностей. На занятии «Нападающий» измеряют расстояние, на которое улетает бумажный мячик. На занятии «Вратарь» дети подсчитывают количество голов, промахов и отбитых мячей, создают программу автоматического ведения счета. На занятии «Ликующие болельщики» воспитанники используют числа для оценки качественных показателей, чтобы определить наилучший результат в трёх различных категориях. Большое внимание в программе уделяется развитию творческой фантазии детей. Они уже конструируют не по готовому образцу, а по собственному воображению, иногда обращаясь к фотографии, чертежу. Нередко у детей возникает желание переделать игрушки, постройки или изготовить новые. Конструктор LEGO и программное обеспечение к нему LEGO WeDO предоставляет прекрасную возможность учиться ребенку на собственном опыте.

Организационное обеспечение реализации программы

Программа предполагает организацию совместной и самостоятельной деятельности один раз в неделю с группой детей старшего дошкольного возраста. Предусмотренная программой деятельность может организовываться как на базе одной отдельно взятой группы, так и в смешанных группах, состоящих из воспитанников старшей и подготовительной группы.

Краткие сведения о группе

Дети старшего дошкольного возраста

Форма занятий – подгрупповая, индивидуальная.

Год обучения – 1.

Количество занятий в неделю – 4 занятия по 30 минут.

Материально – техническое обеспечение

Современные робототехнические системы включают в себя микропроцессорные системы управления, системы движения, оснащенные развитым сенсорным обеспечением и средствами адаптации к изменяющимся условиям внешней среды. При изучении таких систем широко используются модели. Одним из первых конструкторов, с помощью которых можно создавать программируемые модели, является комплект LEGO WeDo - конструктор (набор сопрягаемых деталей и электронных блоков) для создания программируемого робота.

Программа предусматривает использование базовых датчиков и двигателей комплекта LEGO WeDo, также изучение основ программирования в среде LEGO WeDo.

Для организации потребуется:

Интерактивная доска; ноутбук; проектор; конструктор ПервоРобот LEGO WeDo - 10 шт.; программное обеспечение ПервоРобот LEGO WeDo, которое включает в себя:

В набор входят 158 элементов, включая USB ЛЕГО-коммутатор, мотор, датчик наклона и датчик расстояния, позволяющие сделать модель более маневренной и «умной».

Программное обеспечение ПервоРобот LEGO® WeDo™ (LEGO Education WeDo Software).

Тематическое планирование

по дополнительной образовательной деятельности «Робототехника»

январь-февраль 2018г.

№ п\п

Тема

занятия

Кол-во

Основное содержание деятельности

Форма

занятия

Интеграция

Виды деятельности

Форма работы

Материал

Январь

Знакомство с «Робототехникой»

Инструктаж по технике безопасности. Применение роботов в современном мире: от детских игрушек до серьёзных исследовательских разработок.

Познавательно – исследовательское

Познавательное развитие

Речевое развитие

Продуктивная

Коммуникативная

Двигательная

Фронтальная

Индивидуальная

Конструктор Lego WeDo

Знакомство с конструктором LEGO Education WeDo

Знакомство с основными составляющими частями среды конструктора. Выработка навыка различения деталей в коробке, умение слушать информацию педагога.

Познавательное развитие

Социально-коммуникативное развитие

Речевое развитие

Продуктивная

Коммуникативная

Двигательная

Фронтальная

Индивидуальная

Конструктор Lego WeDo

Исследование деталей конструктора и видов их соединения. Прочность соединения – устойчивость конструкции. Практическая работа № 1 «Сборка набора LEGO Education WeDo»

Вырабатывать навык ориентации в деталях, их классификации в соответствии со спецификациями, приложенными к конструктору, умение слушать инструкцию педагога. Знакомство с принципом создания конструкций.

Познавательно - исследовательское

Познавательное развитие

Социально-коммуникативное развитие

Речевое развитие

Продуктивная

Коммуникативная

Двигательная

Фронтальная

Индивидуальная

Конструктор Lego WeDo

Программирование и конструирование. Мотор и ось.

Знакомство с панелью инструментов, функциональными командами; составление программ в режиме конструирования. Знакомство с мотором. Построение модели, показанной на картинке.

Познавательно - исследовательское

Познавательное развитие

Социально-коммуникативное развитие

Речевое развитие

Продуктивная

Коммуникативная

Двигательная

Фронтальная

Индивидуальная

Управление датчиками и моторами при помощи программного обеспечения WeDo. Перекрестная и ременная передача. Снижение и увеличение скорости

Структура и ход программы. Датчики и их параметры:

Датчик поворота,

Датчик растояния.

Знакомство с ременной и перекрестной передачей. Построение модели, показанной на картине. Сравнение данных видов передачи. Знакомство со способами снижения и увеличения скорости

Познавательно - исследовательское

Познавательное развитие

Социально-коммуникативное развитие

Речевое развитие

Продуктивная

Коммуникативная

Двигательная

Фронтальная

Индивидуальная

Конструктор Lego WeDo, компьютер, проектор

Февраль

Знакомство с первыми шагами «Шкивы и ремни»

Дать знание о том, что шкив, насаженный на ось мотора, начинает вращаться. Шкив вращает ремень. Ремень вращает второй шкив.

Познавательно - исследовательское

Познавательное развитие

Социально-коммуникативное развитие

Речевое развитие

Продуктивная

Коммуникативная

Двигательная

Фронтальная

Индивидуальная

Конструктор Lego WeDo, компьютер, проектор

«Танцующие птицы»

Знать правила безопасной работы. Знать основные компоненты конструкторов ЛЕГО. Знать конструктивные особенности различных моделей, сооружений и механизмов. Содержание: воспитанники знакомятся с ременными передачами, экспериментируют со шкивами разных размеров, прямыми и перекрёстными ременными передачами.

Познавательно - исследовательское

Познавательное развитие

Социально-коммуникативное развитие

Речевое развитие

Продуктивная

Коммуникативная

Двигательная

Фронтальная

Индивидуальная

Конструктор Lego WeDo, компьютер, проектор

Знакомство с первыми шагами «Датчик расстояния»

Дать представления о том, что датчик расстояния отслеживает расстояние до объекта и сообщает его компьютеру.

Познавательно - исследовательское

Познавательное развитие

Социально-коммуникативное развитие

Речевое развитие

Продуктивная

Коммуникативная

Двигательная

Фронтальная

Индивидуальная

Конструктор Lego WeDo, компьютер, проектор

«Голодный аллигатор»

Знать конструктивные особенности различных моделей, сооружений и механизмов; Знать компьютерную среду, включающую в себя графический язык программирования. Содержание: на занятии дети программируют аллигатора, чтобы он закрывал пасть, когда датчик расстояния обнаруживает в ней «пищу».

Познавательно - исследовательское

Познавательное развитие

Социально-коммуникативное развитие

Речевое развитие

Продуктивная

Коммуникативная

Двигательная

Фронтальная

Индивидуальная

Конструктор Lego WeDo, компьютер, проектор

Знакомство с первыми шагами «Датчик наклона»

сообщает о направлении наклона. Он различает шесть положений: «Носом вверх», «Носом вниз», «На левый бок», «На правый бок», «Нет наклона» и «Любой наклон».

Познавательно - исследовательское

Познавательное развитие

Социально-коммуникативное развитие

Речевое развитие

Продуктивная

Коммуникативная

Двигательная

Фронтальная

Индивидуальная

Конструктор Lego WeDo, компьютер, проектор

«Непотопляемый парусник»

Знать конструктивные особенности различных моделей, сооружений и механизмов. Знать компьютерную среду, включающую в себя графический язык программирования. Знать, как использовать созданные программы. Содержание: на занятии дети строят модель, программируют и обыгрывая модель последовательно описывают приключения попавшего в шторм Макса.

Познавательно - исследовательское

Познавательное развитие

Социально-коммуникативное развитие

Речевое развитие

Продуктивная

Коммуникативная

Двигательная

Фронтальная

Индивидуальная

Конструктор Lego WeDo, компьютер, проектор

Конструирование по собственному замыслу

Закрепить полученные знания и конструктивные навыки, умение создавать замысел и реализовывать его.

Познавательно - исследовательское

Познавательное развитие

Социально-коммуникативное развитие

Речевое развитие

Продуктивная

Коммуникативная

Двигательная

Фронтальная

Индивидуальная

Конструктор Lego WeDo, компьютер, проектор

«Обезьянка барабанщица»

Знать конструктивные особенности различных моделей, сооружений и механизмов. Знать компьютерную среду, включающую в себя графический язык программирования. Содержание: занятие посвящено изучению принципа действия рычагов https://accounts.google.com


Электрика своими руками

© Copyright 2024, azowo.ru

  • Рубрики
  • Все о розетках
  • Все о выключателях
  • Провод СИП
  • Провод ВВГнг
  • В розетке две фазы
  •  
  • Все о розетках
  • Все о выключателях
  • Провод СИП
  • Провод ВВГнг
  • В розетке две фазы