Делимость натуральных чисел. План-конспект урока по алгебре (5 класс) на тему: План урока Деление натуральных чисел

  • Дата: 28.09.2019

Деление – действие, обратное умножению, с его помощью по произведению и одному из множителей находится второй множитель.

Разделить число а на число b – это значит найти такое число, которое при умножении на число b дает число а :

а: b = с , если с · b = а .

Число а называется делимым, b – делителем, с – частным.

Если известный и искомый множители - натуральные однозначные числа, то неизвестный множитель находится по таблице умножения.

Деление натурального многозначного числа на натуральное однозначное число выполняется поразрядно, начиная со старшего разряда.

Если в старшем разряде делимого стоит число меньшее, чем делитель, то единицы старшего разряда переводятся в единицы соседнего младшего разряда и деление начинается с этого разряда.

Например, 896 разделим на 7.

  • 8 сотен делим на 7, получаем 1 сотню и одна сотня осталась.
  • Переводим оставшуюся сотню в десятки, добавляем 9 десятков из разряда десятков, получаем 19 десятков.
  • 19 десятков делим на 7, получаем 2 десятка , 5 десятков остается.
  • Переводим оставшиеся десятки в единицы, получаем 50 единиц, добавляем 6 единиц из разряда единиц, получаем 56 единиц.
  • 56 единиц делим на 7, получаем 8 единиц .

Значит, 896: 7 = 128 .

Обычно процесс деления записывают в «столбик».

Деление на натуральное многозначное число производится аналогично. При этом, в первое «промежуточное» делимое включается столько старших разрядов, чтобы оно получилось больше делителя.

Например, 1976 разделим на 26.

  • Число 1 в старшем разряде меньше 26, поэтому рассмотрим число, составленное из цифр двух старших разрядов – 19.
  • Число 19 также меньше 26, поэтому рассмотрим число, составленное из цифр трех старших разрядов – 197.
  • Число 197 больше 26, делим 197 десятков на 26: 197: 26 = 7 (15 десятков осталось).
  • Переводим 15 десятков в единицы, добавляем 6 единиц из разряда единиц, получаем 156.
  • 156 делим на 26, получаем 6.
Значит, 1976: 26 = 76.

Если на каком-то шаге деления «промежуточное» делимое оказалось меньше делителя, то в частном записывается 0, а число из данного разряда переводится в следующий, более младший разряд.

Пример: 3344: 16 = 209.

Деление натуральных чисел нацело (без остатка) не всегда выполнимо. Например, нельзя разделить 45 на 8, так как нет такого натурального числа, которое при умножении на 8 давало бы 45.

В таких случаях рассматривают деление с остатком.

Деление с остатком

Если нельзя произвести деление натуральных чисел нацело, то выполняют деление с остатком. При этом действии ищут наибольшее натуральное число, которое при умножении на делитель дает число, меньше делимого.

а: b = с (ост. d) , где с и d такие, что с · b + d = а , d .

Примеры:

17: 2 = 8 (ост. 1);
35: 3 = 11 (ост. 2);
493: 5 = 98 (ост. 3).

Деление многозначных натуральных чисел выполняется в «столбик», остаток записывается после частного в скобках.

284: 15 = 18 (ост. 14).

Деление с десятичной дробью в частном

Если натуральное число не делится нацело на однозначное натуральное число, можно продолжить поразрядное деление и получить в частном десятичную дробь.

Например, 64 разделим на 5.

  • 6 десятков делим на 5, получаем 1 десяток и 1 десяток в остатке.
  • Оставшийся десяток переводим в единицы, добавляем 4 из разряда единиц, получаем 14.
  • 14 единиц делим на 5, получаем 2 единицы и 4 единицы в остатке.
  • 4 единицы переводим в десятые, получаем 40 десятых.
  • 40 десятых делим на 5, получаем 8 десятых.
Значит, 64: 5 = 12,8

Таким образом, если при делении натурального числа на натуральное однозначное или многозначное число получается остаток, то можно поставить в частном запятую, остаток перевести в единицы следующего, меньшего разряда и продолжать деление.

Пример: 97: 25 = 3,88

Отношение делимости. Если при делении с остатком натурального числа а на натуральное число b остаток равен 0, то говорят что а делится на b. В этом случае а называют кратным числа b, b называют делителем числа а.

Обозначение а:b

Запись символами (а,bN) (а:b)(сN) (а=вс).

Простое число. Натуральное число называют простым, если оно делится только на себя и на единицу, т.е если у него только два делителя.

Составное число. Натуральное число называют составным, если у него более двух делителей.

  • 1 не является ни простым, ни составным числом, т.к имеет только один делитель - себя.
  • 2 - единственное четное простое число.

Свойства отношения делимости:

  • 1. если а делится на b, то а?b.
  • 2. рефлексивность, т.е. каждое натуральное число делится само на себя.
  • 3. антисимметричность, т.е. если два числа не равны, и первое из них делится на второе, то второе не делится на первое.
  • 4. транзитивность, т.е. если первое число делится на второе число, второе число делится на третье число, то первое число делится на третье число.

Отношение делимости на N - это отношение частичного нестрогого порядка. Порядок частичный, т.к. есть такие пары разных натуральных чисел, ни одно из которых не делится на другое.

Признак делимости суммы на число. Если каждое слагаемое суммы делится на число, то вся сумма делится на это число (для того чтобы сумма делилась на число, достаточно, чтобы каждое слагаемое делилось на это число). Этот признак не является необходимым, т.е. если каждое слагаемое не делится на число, то вся сумма может делиться на это число.

Признак делимости разности на число. Если уменьшаемое и вычитаемое делятся на число и уменьшаемое больше вычитаемого, то разность делится на это число (для того чтобы разность делилась на число, достаточно, чтобы уменьшаемое и вычитаемое делились на это число, при условии, что эта разность положительна). Этот признак не является необходимым, т.е. уменьшаемое и вычитаемое могут не делиться на число, а их разность может делиться на это число.

Признак неделимости суммы на число. Если все слагаемые суммы, кроме одного, делятся на число, то сумма не делится на это число.

Признак делимости произведения на число. Если хотя бы один множитель в произведении делится на число, то произведение делится на это число (для того чтобы произведение делилось на число, достаточно, чтобы один множитель в произведении делился на это число). Этот признак не является необходимым, т.е. если ни один множитель в произведении не делится на число, то произведение может делиться на это число.

Признак делимости произведения на произведение. Если число а делится на число b, число с делится на число d, то произведение чисел а и с делится на произведение чисел b и d. Этот признак не является необходимым.

Признак делимости натуральных чисел на 2. Чтобы натуральное число делилось на 2, необходимо и достаточно, чтобы десятичная запись этого числа оканчивалась на одну из цифр 0, 2, 4, 6 или 8.

Признак делимости натуральных чисел на 5. Чтобы натуральное число делилось на 5, необходимо и достаточно, чтобы десятичная запись этого числа оканчивалась на 0 или на 5.

Признак делимости натуральных чисел на 4. Чтобы натуральное число делилось на 4, необходимо и достаточно, чтобы десятичная запись этого числа оканчивалась на 00 или две последние цифры в десятичной записи этого числа образовывали двузначное число, кратное 4.

Признак делимости натуральных чисел на 3. Чтобы натуральное число делилось на 3, необходимо и достаточно, чтобы сумма всех цифр десятичной записи этого числа делилась на 3.

Признак делимости натуральных чисел на 9. Чтобы натуральное число делилось на 9, необходимо и достаточно, чтобы сумма всех цифр десятичной записи этого числа делилась на 9.

Общий делитель натуральных чисел а и в - это натуральное число, которое является делителем каждого из этих чисел.

Наибольший общий делитель натуральных чисел а и в- это наибольшее натуральное число из всех общих делителей этих чисел.

Обозначение НОД (а, в)

Свойства НОД (а, в):

  • 1. всегда существует и только один.
  • 2. не превосходит меньшего из а и в.
  • 3. делится на любой общий делитель а и в.

Общее кратное натуральных чисел а и в - это натуральное число, кратное каждому из этих чисел.

Наименьшее общее кратное натуральных чисел а и в - это наименьшее натуральное число из всех общих кратных этих чисел.

Обозначение НОК (а, в)

Свойства НОК (а, в):

  • 1. всегда существует и только одно.
  • 2. не меньше большего из а и в.
  • 3. любое общее кратное а и в делится на него.

Взаимно простые числа. Натуральные числа а и в называют взаимно простыми, если у них нет общих делителей, кроме 1, т.е. НОД (а, в)=1.

Признак делимости на составное число. Чтобы натуральное число а делилось на произведение взаимно простых чисел m и n, необходимо и достаточно, чтобы число а делилось на каждое из них.

  • 1. Чтобы число делилось на 12, необходимо и достаточно, чтобы оно делилось на 3 и на 4.
  • 2. Чтобы число делилось на 18, необходимо и достаточно, чтобы оно делилось на 2 и на 9.

Разложение числа на простые множители- это представление этого числа в виде произведения простых множителей.

Основная теорема арифметики. Любое составное число можно единственным образом представить в виде произведения простых множителей.

Алгоритм нахождения НОД:

Записать произведение общих для данных чисел простых множителей, причем каждый множитель записать с наименьшим показателем, с каким он входит во все разложения.

Найти значение полученного произведения. Это и будет НОД данных чисел.

Алгоритм нахождения НОК:

Разложить каждое число на простые множители.

Записать произведение всех простых множителей из разложений, причем каждый из них записать с наибольшим показателем, с каким он входит во все разложения.

Найти значение полученного произведения. Это и будет НОК данных чисел.

Множество положительных рациональных чисел

Дробь. Пусть даны отрезок а и единичный отрезок е , который состоит из n отрезков, равных e .

Если отрезок а состоит из m отрезков, равных e . то его длина может быть представлена в виде

Символ называют дробью ; m, n - натуральные числа; m - числитель дроби, n - знаменатель дроби. n показывает, на сколько равных частей разделена единица измерения; m показывает, сколько таких частей содержится в отрезке a.

Равные дроби. Дроби, выражающие длину одного и того же отрезка в одной единице измерения, называют равными.

Признак равенства дробей.

Основное свойство дроби. Если числитель и знаменатель дроби умножить или разделить на одно и то же натуральное число, то получится дробь, равная данной.

Сокращение дроби - это замена данной дроби другой, равной ей, но с меньшим числителем и знаменателем.

Несократимая дробь - это дробь, числитель и знаменатель которой взаимно простые числа, т.е. их НОД равен единице.

Приведение дробей к общему знаменателю - это замена данных дробей другими, равными им с равными знаменателями.

Положительное рациональное число - это бесконечное множество разных по написанию, но равных между собой дробей; каждая дробь этого множества есть форма записи этого положительного рационального числа.

Равные положительные рациональные числа - это числа, которые могут быть записаны равными дробями.

Сумма положительных рациональных чисел. Если положительное рациональное число a b представлено дробью, то их суммой с , представленное дробью.

Переместительное свойство сложения. От перемены мест слагаемых, значение суммы не меняется.

Сочетательное свойство сложения. Чтобы к сумме двух чисел прибавить третье, можно к первому числу прибавить сумму второго и третьего.

Существование суммы и её единственность. Каковы бы не были положительные рациональные числа a и b их сумма всегда существует и причем единственна.

Правильная дробь - дробь. числитель которой меньше знаменателя.

Неправильная дробь - дробь, числитель которой больше знаменателя или равен ему.

Неправильную дробь можно записать в виде натурального числа или в виде смешанной дроби.

Смешанная дробь - это сумма натурального числа и правильной дроби (принято записывать без знака сложения).

Отношение «меньше» на Q . Положительное рациональное число b меньше положительного рационального числа a, если существует положительное рациональное число c , которое в сумме с b дает a .

Свойства отношения «меньше».

  • 1. Антирефлексивность. Ни одно число не может быть меньше самого себя.
  • 2. Антисимметричность. Если первое число меньше второго, то второе не может быть меньше первого.
  • 3. Транзитивность. Если первое число меньше второго, а второе меньше третьего, то первое число меньше третьего.
  • 4. Связанность. Если два числа не равны, то либо первое меньше второго, либо второе меньше первого.

Отношение «меньше» на Q - это отношение строгого линейного порядка.

Разность положительных рациональных чисел. Разностью положительных рациональных чисел a и b называется положительное рациональное число c , которое в сумме с b дает a .

Существование разности. Разность чисел a и b существует тогда и только тогда, когда b меньше a .

Если разность существует, то она единственная.

Произведение положительных рациональных чисел. Если положительное рациональное число a представлено дробью, положительное рациональное число b представлено дробью, то их произведением называется положительное рациональное число с , представленное дробью.

Существование произведения и его единственность. Каковы бы не были положительные рациональные числа a и b их произведение всегда существует и причем единственно.

Переместительное свойство умножения. От перемены мест сомножителей значение произведения не меняется.

Сочетательное свойство умножения. Чтобы произведение двух чисел умножить на третье, можно первое число умножить на произведение второго и третьего.

Распределительное свойство умножения относительно сложения. Чтобы сумму чисел умножить на число, можно каждое слагаемое умножить на это число и полученные произведения сложить.

Частное положительных рациональных чисел. Частным положительных рациональных чисел a и b называется положительное рациональное число c, которое при умножении на b дает a .

Существование частного. Каковы бы не были положительные рациональные числа a и b , их частное всегда существует и причем единственное.

Множество Q и его свойства.

  • 1. Q линейно упорядоченно с помощью отношения «меньше».
  • 2. В Q нет наименьшего числа.
  • 3. В Q нет наибольшего числа.
  • 4. Q бесконечное множество.
  • 5. Q плотно в себе, т.е. меду любыми двумя разными положительными рациональными числами заключено бесконечное множество положительных рациональных чисел.

Запись положительных рациональных чисел в виде десятичных дробей.

Десятичная дробь - это дробь вида m/n , где m и n - натуральные числа.

Виды десятичных дробей. Конечные, бесконечные, периодические (чисто периодические и смешанно периодические), непериодические.

Конечная десятичная дробь - это дробь. в которой после запятой стоит конечное число цифр.

Бесконечная периодическая десятичная дробь - это дробь, которая получается бесконечным повторением одной и той же группой цифр, начиная с некоторого номера, а повторяющаяся группа цифр называется её периодом.

Чисто периодические и смешанно периодические дроби. Если период дроби начинается сразу после запятой, то эта дробь называется чисто периодической. Если между запятой и началом периода есть несколько цифр, то дробь называется смешано периодической.

Теорема. Любое положительное рациональное число может быть представлено либо в виде конечной десятичной дроби, либо бесконечной периодической десятичной дроби.

Перевод обыкновенной дроби в десятичную. Для перевода надо числитель делить на знаменатель в столбик. При делении получится либо конечная десятичная дробь, либо бесконечная периодическая.

Перевод конечной десятичной дроби в обыкновенную. Отбросить запятую, полученное число записать в числитель, а в знаменатель записать столько нулей после единицы, сколько цифр было после запятой.

Перевод чисто периодической дроби в обыкновенную. Период дроби записать в числитель, а в знаменатель записать столько девяток, сколько цифр в периоде.

Перевод смешанно периодической дроби в обыкновенную. В числитель записать разность между числом, стоящим между запятой и второй скобкой, и числом, стоящим между запятой и первой скобкой; в знаменатель записать столько девяток, сколько цифр в периоде, и столько нулей после них, сколько цифр между запятой и первой скобкой.

Теорема. Чтобы несократимую дробь можно было записать в виде конечной десятичной дроби, необходимо и достаточно, чтобы в разложение ее знаменателя на простые множители входили лишь числа 2 и 5.


В этой статье мы разберемся с правилами, по которым проводится деление натуральных чисел . Здесь мы будем рассматривать лишь деление натуральных чисел без остатка , или, как его еще называют, деление нацело (то есть, только те случаи, в которых сохраняется ). Деление натуральных чисел с остатком > заслуживает отдельной статьи.

Правила деления натуральных чисел невозможно сформулировать, если не проследить связь деления с умножением, что и сделано в самом начале этой статьи. Далее разобраны самые простые правила деления, напрямую следующие из свойств этого действия - это деление равных натуральных чисел и деление натурального числа на единицу. После этого подробно на примерах рассмотрено деление с использованием таблицы умножения. Дальше показано, как выполняется деление на десять, сто, тысячу и т.д., деление натуральных чисел, записи которых оканчиваются цифрами 0 , и все остальные случаи. Весь материал снабжен примерами с детальным описанием решений. В конце статьи показано, как выполняется проверка результата деления при помощи умножения. В итоге Вы будете владеть всеми навыками, необходимыми для деления произвольных натуральных чисел.

Навигация по странице.

Связь деления с умножением

Давайте проследим связь между делением и умножением. Для этого вспомним, что деление связано с представлением множества, которое мы делим, в виде объединения нескольких одинаковых множеств, на которые мы делим исходное множество (об этом мы говорили в разделе общее представление о делении). В свою очередь умножение связано с объединением некоторого количества одинаковых множеств в одно (при необходимости обращайтесь к разделу теории общее представление об умножении). Таким образом, деление является действием, обратным к умножению .

Поясним, что же означает последняя фраза.

Для этого рассмотрим следующую ситуацию. Пусть мы имеем b множеств по c предметов в каждом, и мы объединяем их в одно множество, в котором получается a предметов. На основании смысла умножения натуральных чисел можно утверждать, что описанному действию отвечает равенство c·b=a . Теперь полученное множество вновь разделим на b одинаковых множеств. Понятно, что при этом в каждом полученном множестве будет c предметов. Тогда, вспомнив смысл деления натуральных чисел , можно записать равенство a:b=c .

Приходим к следующему утверждению: если произведение натуральных чисел c и b равно a , то частное от деления a на b равно c .

Итак, если c·b=a , то a:b=c . Однако в силу переместительного свойства умножения натуральных чисел мы можем равенство c·b=a переписать в виде b·c=a , откуда следует, что a:c=b . Таким образом, если мы знаем, что произведение двух натуральных чисел с и b равно a , то есть, c·b=a , то мы можем сказать, что частные a:b и a:c равны c и b соответственно .

На основании всей приведенной информации можно дать определение деления натуральных чисел на основе умножения.

Определение.

Деление – это действие, с помощью которого находится один множитель, когда известно произведение и другой множитель.

На базе этого определения мы и будем строить правила деления натуральных чисел.

Деление натуральных чисел как последовательное вычитание

В принципе знание того, что деление является действием, обратным к умножению, достаточно для того, чтобы научиться проводить это действие. Однако хочется рассказать еще об одном подходе к проведению деления натуральных чисел, в котором деление рассматривается как последовательное вычитание. Связано это с его простотой и очевидностью.

Чтобы все было максимально понятно, давайте рассмотрим пример.

Пример.

Чему равен результат деления 12 на 4 ?

Решение.

Отталкиваясь от смысла деления натуральных чисел, поставленную задачу можно смоделировать так: имеется 12 предметов, их нужно разделить на равные кучки по 4 предмета в каждой, количество полученных кучек даст нам ответ на вопрос, чему равно частное 12:4 .

Давайте последовательно шаг за шагом будем из исходных предметов забирать по 4 предмета и формировать из них требуемые кучки до того момента, пока не закончатся исходные предметы. Количество шагов, которые нам потребуется сделать, укажет нам количество получившихся кучек, а значит и ответ на поставленный вопрос.

Итак, из исходных 12 предметов откладываем 4 в сторону, они образуют первую кучку. После этого действия в исходной куче остается 12−4=8 предметов (при необходимости вспомните смысл вычитания натуральных чисел). Из этих 8 предметов забираем еще 4 предмета, и формируем из них вторую кучку. После этого действия в исходной куче предметов остается 8−4=4 предмета. Очевидно, что из оставшихся предметов можно сформировать еще одну, третью по счету, кучку, после чего у нас не останется ни одного предмета в исходной куче (то есть, у нас будет 4−4=0 предметов в исходной куче). Таким образом, мы получили 3 кучки, и можно сказать, что мы выполнили деление натурального числа 12 на натуральное число 4 , при этом получили 3 .

Ответ:

12:4=3 .

Теперь давайте отойдем от предметов и посмотрим, что же мы делали с натуральными числами 12 и 4 ? Мы проводили последовательное вычитание делителя 4 до того момента, пока не получили нуль, при этом считали количество требуемых действий, которое и дало нам результат деления.

Вывод: деление одного натурального числа на другое можно провести, выполняя последовательное вычитание .

Для закрепления материала этого пункта статьи рассмотрим решение еще одного примера.

Пример.

Вычислим частное 108:27 , проводя последовательное вычитание.

Решение.

Второе действие: 81−27=54 .

Третье действие: 54−27=27 .

Четвертое действие 27−27=0 (это свойство вычитания равных натуральных чисел).

Итак, мы получили нуль, последовательно проведя вычитание 4 раза, следовательно, 108:27=4 .

Ответ:

108:27=4 .

Стоит заметить, что деление натуральных чисел таким способом удобно применять лишь тогда, когда требуется небольшое количество последовательных вычитаний для получения результата. В остальных случаях используются правила деления натуральных чисел, которые мы подробно разберем ниже.

Деление равных натуральных чисел

Частное от деления натурального числа на равное ему натуральное число равно единице . Это утверждение является свойством деления равных натуральных чисел .

К примеру, 1:1=1 , 143:143=1 , результатом деления натуральных чисел 10 555 и 10 555 также является единица.

Деление натурального числа на единицу

По таблице умножения можно также отыскать один из двух однозначных множителей, если известно произведение и другой множитель. А мы в первом пункте данной статьи выяснили, что деление – это нахождение одного из множителей по произведению и другому множителю. Таким образом, с помощью таблицы умножения можно проводить деление любого из натуральных чисел, расположенных в таблице умножения на розовом фоне, на однозначное натуральное число.

Для примера, разделим 48 на 6 . С помощью таблицы умножения это можно сделать одним из двух способов. Приведем сначала графическую иллюстрацию, после чего дадим описание.

Первый способ (соответствует рисунку выше слева). Находим делимое (в нашем примере это натуральное число 48 ) в том столбце, в верхней ячейке которого находится делитель (для нашего примера число 6 ). Результат деления находится в крайней левой ячейке той строки, в которой расположено найденное делимое. Для нашего примера это число 8 , которое обведено окружностью синего цвета.

Второй способ (соответствует рисунку выше справа). Находим делимое 48 в той строке, в левой ячейке которого расположен делитель 6 . Искомое частное в этом случае находится в верхней ячейке того столбца, в котором расположено найденное делимое 48 . Результат обведен синей окружностью.

Итак, мы с помощью таблицы умножения разделили 48 на 6 и получили 8 .

Для закрепления материала приведем чертеж, показывающий процесс деления натурального числа 7 на 1 .

Деление на 10 , 100 , 1 000 и т.д.

Сразу дадим формулировку правила деления натуральных чисел на 10 , 100 , 1 000 , … (будем считать, что такое деление возможно) и приведем пример, а потом приведем необходимые разъяснения.

Результатом деления натурального числа на 10 , 100 , 1 000 и т.д. является натуральное число, запись которого получается из записи делимого, если справа отбросить один, два, три и так далее нулей (то есть, отбрасывается столько цифр 0 , сколько их содержится в записи делимого).

Например, частное от деления числа 30 на 10 равно 3 (от делимого 30 справа отбросили одну цифру 0 ), а частное 120 000:1 000 равно 120 (от 120 000 справа убрали три цифры 0 ).

Озвученное правило достаточно просто обосновать. Для этого достаточно вспомнить правила умножения натурального числа на десять, сто, тысячу и т.д. Приведем пример. Пусть нам требуется вычислить частное 10 200:100 . Так как 102·100=10 200 , то в силу связи между сложением и умножением результатом деления натурального числа 10 200 на 100 является натуральное число 102 .

Представление делимого в виде произведения

Иногда провести деление натуральных чисел позволяет представление делимого в виде произведения двух чисел, хотя бы одно из которых делится на делитель. Этот способ деления основан на свойстве деления произведения двух чисел на натуральное число .

Рассмотрим один из самых простых характерных примеров.

Пример.

Разделим 30 на 3 .

Решение.

Очевидно, что делимое 30 можно представить в виде произведения натуральных чисел 3 и 10 . Имеем 30:3=(3·10):3 . Воспользоваться свойством деления произведения двух чисел на натуральное число. Имеем (3·10):3=(3:3)·10=1·10=10 . Итак, частное от деления 30 на 3 равно 10 .

Ответ:

30:3=10 .

Приведем решения еще пары аналогичных примеров.

Пример.

Разделите 7 200 на 72 .

Решение.

В этом случае делимое 7 200 можно рассматривать как произведение чисел 72 и 100 . При этом получаем следующий результат: 7 200:72=(72·100):72= (72:72)·100=1·100=100 .

Ответ:

7 200:72=100 .

Пример.

Разделим 1 600 000 на 160 .

Решение.

Очевидно, что 1 600 000 – это произведение 160 и 10 000 , поэтому 1 600 000:160=(160·10 000):160= (160:160)·10 000=1·10 000=10 000 .

Ответ:

1 600 000:160=10 000 .

В более сложных примерах при представлении делимого в виде произведения приходится ориентироваться на таблицу умножения. Из следующих примеров будет понятно, что мы имеем в виду.

Пример.

Выполните деление натурального числа 5 400 на 9 .

Решение.

По таблице умножения мы можем разделить 54 на 9 , поэтому делимое 5 400 логично представить в виде произведения 54·100 и закончить деление: 5 400:9=(54·100):9= (54:9)·100=6·100=600 .

Ответ:

5 400:9=600 .

Для закрепления материала рассмотрим решение еще одного примера.

Пример.

Вычислим частное 120:4 .

Решение.

Для этого делимое 120 представим в виде произведения 12 и 10 , после чего воспользуемся свойством деления произведения двух чисел на натуральное число. Имеем 120:4=(12·10):4=(12:4)·10=3·10=30 .

Ответ:

120:4=30 .

Деление натуральных чисел, записи которых оканчиваются цифрами 0

Здесь нам потребуется вспомнить свойство деления натурального числа на произведение двух чисел . Поясним, для чего. Чтобы выполнить деление натуральных чисел, записи которых оканчиваются цифрами 0 , делитель представляется в виде произведения двух натуральных чисел, после чего применяется упомянутое свойство деления.

Разберемся с этим на примерах. Возьмем два натуральных числа, записи которых оканчиваются цифрами ноль, и разделим их.

Пример.

Разделим 490 на 70 .

Решение.

Так как 70=10·7 , то 490:70=490:(10·7) . Последнее выражение в силу свойства деления натурального числа на произведение равно (490:10):7 . Делить на 10 мы научились в одном из предыдущих пунктов, получаем (490:10):7=49:7 . Полученное частное находим по таблице умножения, в итоге получаем 490:70=7 .

Ответ:

490:70=7 .

Для закрепления материала рассмотрим решение еще одного более сложного примера.

Пример.

Вычислим частное 54 000:5 400 .

Решение.

Представляем 5 400 в виде произведения 100·54 и выполняем деление натурального числа на произведение: 54 000:5 400=54 000:(100·54)= (54 000:100):54=540:54 . Здесь осталось представить 540 как 54·10 (при необходимости вернитесь к предыдущему пункту) и закончить вычисления: 540:6=(54·10):54= (54:54)·10=1·10=10 . Итак, 54 000:5 400=10 .

Ответ:

54 000:5 400=10 .

Информацию этого пункта можно подытожить следующим утверждением: если в записи и делимого и делителя справа находятся цифры 0 , то в записях нужно избавиться от одинакового количества крайних справа нолей, после чего выполнить деление полученных чисел . Например, деление натуральных чисел 818 070 000 и 201 000 сводится к делению чисел 818 070 и 201 после того, как мы в записях делимого и делителя справа уберем по три цифры 0 .

Подбор частного

Пусть натуральные числа a и b таковы, что a делится на b , причем если b умножить на 10 , то получится число, которое больше, чем a . В этом случае частное a:b является однозначным натуральным числом, то есть, числом от 1 до 9 , и его проще всего подобрать. Для этого делитель последовательно умножается на 1 , 2 , 3 и так далее до того момента, пока произведение не будет равно делимому. Как только такое равенство будет получено, то будет найдено частное a:b .

Рассмотрим пример.

Пример.

Найдем частное 108:27 .

Решение.

Очевидно, что делитель 108 меньше, чем 27·10=270 (при необходимости обращайтесь к статье сравнение натуральных чисел). Подберем частное. Для этого последовательно будем умножать делитель 27 на 1 , 2 , 3 , …, пока не получим делимое 108 . Поехали: 27·1=27 , 27·2=54 , 27·3=81 , 27·4=108 (при необходимости смотрите статью умножение натуральных чисел). Следовательно, 108:27=4 .

Ответ:

108:27=4 .

В заключении этого пункта отметим, что частное в таких случаях можно не подбирать, а находить его с помощью .

Представление делимого в виде суммы натуральных чисел

Если все способы, рассмотренные выше, не позволяют выполнить деление натуральных чисел, то нужно делимое представить в виде суммы нескольких слагаемых, каждое из которых легко делится на делитель. Далее придется использовать свойство деления суммы натуральных чисел на данное число , и закончить вычисления. Остается главный вопрос: «В виде каких слагаемых представлять делимое"?

Опишем алгоритм получения слагаемых, дающих в сумме делимое. Для большей доступности будем одновременно рассматривать пример, в котором делимое равно 8 551 , а делитель равен 17 .

    Сначала вычисляем, насколько количество знаков в записи делимого больше, чем количество знаков в записи делителя, и запоминаем это число.

    Например, если делимым является натуральное число 8 551 , а делителем – число 17 , то запись делимого содержит на 2 знака больше (8 551 – четырехзначное число, 17 – двухзначное, таким образом, разница в количестве знаков определяется разностью 4−2=2 ). То есть, запоминаем число 2 .

    Теперь в записи делителя справа дописываем цифры 0 в количестве, определяемым числом, полученным в предыдущем пункте. При этом если записанное число будет больше делимого, то из запомненного в предыдущем пункте числа нужно вычесть 1 .

    Возвращаемся к нашему примеру. В записи делителя 17 дописываем справа две цифры 0 , при этом получаем число 1 700 . Это число меньше, чем делимое 8 551 , поэтому запомненное в предыдущем пункте число НЕ нужно уменьшать на 1 . Таким образом, у нас в памяти остается число 2 .

    После этого к цифре 1 справа приписываем цифры 0 в количестве, определяемом числом, запомненном в предыдущем пункте. При этом получаем единицу разряда, с которым мы будем работать дальше.

    В нашем примере к цифре 1 приписываем 2 ноля, имеем число 100 , то есть, мы будем работать с разрядом сотен.

    Теперь последовательно умножаем делитель на 1 , 2 , 3 , … единицы рабочего разряда до того момента, пока не получим число, большее чем делимое.

    В нашем примере рабочим разрядом является разряд сотен. Поэтому мы сначала умножаем делитель на одну единицу разряда сотен, то есть, умножаем 17 на 100 , получаем 17·100=1 700 . Полученное число 1 700 меньше делимого 8 551 , поэтому переходим к умножению делителя на две единицы разряда сотен, то есть 17 умножаем на 200 . Имеем 17·200=3 400<8 551 , поэтому продолжаем процесс. Умножаем 17 на 300 , имеем 17·300=5 100<8 551 ; двигаемся дальше 17·400=6 800<8 551 ; дальше 17·500=8 500<8 551 ; наконец 17·600=10 200>8 551 .

    Число, полученное на предпоследнем шаге при умножении, является первым из искомых слагаемых.

    В разбираемом примере искомым слагаемым является число 8 500 (это число равно произведению 17·500 , откуда видно, что 8 500:17=500 , это равенство мы используем дальше).

    После этого находим разность между делимым и первым найденным слагаемым. Если полученное число не равно нулю, то приступаем к нахождению второго слагаемого. Для этого повторяем все описанные шаги алгоритма, но уже в качестве делимого принимаем полученное здесь число. Если в этом пункте опять получается число, отличное от нуля, то приступаем к нахождению третьего слагаемого, еще раз повторяя шаги алгоритма, приняв полученное число в качестве делимого. И так действуем дальше, находя четвертое, пятое и последующие слагаемые, пока полученное в этом пункте число не будет равно нулю. Как только здесь получаем 0, то все слагаемые найдены, и можно переходить к финальной части вычисления исходного частного.

    Возвращаемся к нашему примеру. На этом шаге имеем 8 551−8 500=51 . Так как 51 не равно 0 , то принимаем это число в качестве делимого и повторяем с ним все шаги алгоритма.

    Количество знаков в записях чисел 51 и делителя 17 одинаковое, поэтому запоминаем число 0.

    В записи делителя не нужно дописывать справа ни одной цифры 0 , так как мы запоминали число 0 . То есть, число 17 остается как есть. Это число меньше, чем 51 , поэтому из запомненного числа 0 вычитать единицу не нужно. Таким образом, у нас в памяти остается число 0 .

    К цифре 1 мы не будем справа приписывать ни одной цифры 0 , так как в памяти у нас находится число 0 . То есть, мы будем работать с разрядом единиц.

    Теперь последовательно умножаем делитель 17 на 1 , 2 , 3 и так далее, пока не получим число, превосходящее 51 . Имеем 17·1=17<51 , 17·2=34<51 , 17·3=51 , 17·4=68>51 . На предпоследнем шаге мы получили число 51 (это число равно произведению 17·3 , и это мы используем дальше). Поэтому, вторым слагаемым является число 51 .

    Находим разность между числом 51 и числом 51 , полученным в предыдущем пункте. Имеем 51−51=0 . Следовательно, останавливаем поиск слагаемых.

Теперь мы знаем, что делимое 8 551 нужно представить в виде суммы двух слагаемых 8 500 и 51 .

Закончим нахождение частного. Имеем 8 551:17=(8 500+51):17 . Теперь вспоминаем свойство деления суммы двух чисел на натуральное число, которое нас приводит к равенству (8 500+51):17=8 500:17+51:17 . Выше мы выяснили, что 8 500:17=500 и 51:17=3 . Таким образом, 8 500:17+51:17=500+3=503 . Итак, 8 551:17=503 .

Для закрепления навыков представления делимого в виде суммы слагаемых, рассмотрим решение еще одного примера.

Пример.

Разделим 64 на 2 .

Решение.

1) В записи делимого на один знак больше, чем в записи делителя, поэтому запоминаем число 1 .

2) Если в записи делителя справа дописать одну цифру 0 , то мы получим число 20 , которое меньше, чем делимое 64 . Поэтому запомненное число 1 уменьшать на единицу не нужно.

3) Теперь к 1 приписываем справа одну (так как у нас в памяти число 1 ) цифру 0 , получаем число 10 , то есть, будем работать с десятками.

4) Начинаем делитель 2 последовательно умножать на 10 , 20 , 30 и т.д. Имеем: 2·10=20<64 ; 2·20=40<64 ; 2·30=60<64 ; 2·40=80>64 . Таким образом, первым слагаемым является число 60 (так как 2·30=60 , то 60:2=30 , это равенство нам пригодится дальше).

5) Вычисляем разность 64−60 , которая равна 4 . Это число мы легко можем разделить на делитель 2 , поэтому примем это число в качестве второго (и последнего) слагаемого. (Несомненно, можно было принять это число в качестве делимого, и пройти все шаги алгоритма еще раз, они нас приведут к тому, что вторым слагаемым является число 4 .)

Итак, делимое 64 мы представили в виде суммы двух слагаемых 60 и 4 . Остается закончить вычисления: 64:2=(60+4):2=60:2+4:2=30+2=32 .

Ответ:

64:2=32 .

Решим еще один пример.

Пример.

Вычислим частное 1 178:31 .

Решение.

1) В записи делимого на 2 знака больше, чем в записи делителя. Поэтому запоминаем число 2 .

2) Если к записи делителя справа добавить две цифры 0 , то мы получим число 3 100 , которое больше делимого. Следовательно, запомненное в предыдущем пункте число 2 нужно уменьшить на единицу: 2−1=1 , запоминаем это число.

3) Теперь к цифре 1 добавляем справа одну цифру 0 , получаем число 10 и дальше работаем с десятками.

4) Последовательно умножаем делитель на 10 , 20 , 30 и т.д. Получаем 31·10=310<1 178 ; 31·20=620<1 178 ; 31·30=930<1 178 ; 31·40=1 240>1 178 . Так мы нашли первое слагаемое. Оно равно 930 (дальше нам пригодится равенство 930:31=30 , которое следует из равенства 31·30=930 ).

5) Вычисляем разность: 1 178−930=248 . Так как получили число, не равное нулю, то принимаем его в качестве делимого, и начинаем поиск второго слагаемого по тому же алгоритму.

1) В записи числа 248 на 1 знак больше, чем в записи делителя 31 . Поэтому запоминаем число 1 .

2) Добавляем в записи делителя справа одну цифру 0 , получаем число 310 , которое больше, чем число 248 . Поэтому, из запомненного числа 1 нужно вычесть 1 , при этом получим число 0 и запомним его.

3) Так как у нас в памяти число 0 , то к цифре 1 справа дописывать нулей не нужно. Таким образом, мы работаем с единицами.

4) Последовательно умножаем делитель 31 на 1 , 2 , 3 и так далее. Имеем 31·1=31<248 , 31·2=62<248 , 31·3=93<248 , 31·4=124<248 , 31·5=155<248 , 31·6=186<248 , 31·7=217<248 , 31·8=248 , 31·9=279>248 . Второе слагаемое равно 248 (из равенства 248=31·8 следует, что 248:31=8 , это нам потребуется дальше).

5) Вычисляем разность между числом 248 и полученным числом 248 , имеем 248−248=0 . Следовательно, на этом поиск слагаемых прекращается.

Таким образом, 1 178 представляем в виде суммы 930+248 . Осталось лишь закончить вычисления: 1 178:31=(930+248):31= 930:31+248:31=30+8=38 (на результаты 930:31=30 и 248:31=8 мы обращали внимание выше).

Ответ:

1 178:31=38 .

Пример.

Разделите натуральное число 13 984 на 32 , представив делимое в виде суммы нескольких слагаемых.

Решение.

В этом примере делимое будет представлено в виде трех слагаемых, так как алгоритм придется применять три раза. При этом получится, что первое слагаемое будет равно 12 800 (при этом 12 800=32·400 , следовательно, 12 800:32=400 ), второе – 960 (при этом 960=32·30 , следовательно, 960:32=30 ), а третье – 224 (при этом 224=32·7 , следовательно, 224:32=7 ).

Тогда 13 984:32=(12 800+960+224):32= 12 800:32+960:32+224:32= 400+30+7=437 .

Ответ:

13 984:32=437 .

На этом основные правила деления натуральных чисел можно считать изученными, и этих правил достаточно, чтобы провести деление произвольных натуральных чисел (если это действие вообще возможно выполнить). Но следует обратить внимание еще на одно правило, которое в некоторых случаях позволяет выполнить деление натуральных чисел рациональнее, быстрее и проще.

Легко делятся на

483:7=69 .

Проверка результата деления натуральных чисел умножением

После того, как деление натуральных чисел закончено, не лишним будет сделать проверку полученного результата. Проверка результата деления осуществляется при помощи умножения: чтобы проверить правильность результата деления нужно частное умножить на делитель, при этом должно получиться делимое . Если при умножении получилось число, которое отлично от делимого, то в процессе деления где-то была допущена ошибка.

Немного поясним, откуда взялось это правило для проверки результата деления натуральных чисел. Пусть мы разделили a предметов в b кучек, при этом в каждой кучке оказалось c предметов. По смыслу деления натуральных чисел мы можем записать равенство вида a:b=c , которое отвечает проведенному нами действию. Теперь, если обратно объединить все b кучек, в каждой из которых по c предметов, то понятно, что мы получим исходное множество предметов, в котором их будет a штук. То есть, по смыслу умножения натуральных чисел имеем b·c=a . Таким образом, если a:b=c , то также должно быть справедливо равенство b·c=a . На этом и основано правило проверки результата деления натуральных чисел при помощи умножения.

Рассмотрим решения примеров, в которых осуществляется проверка результата деления с помощью умножения.

Пример.

Натуральное число 475 было разделено на натуральное число 19 , при этом получилось частное 25 . Правильно ли выполнено деление?

960+64 (это мы сделали по алгоритму, описанному в одном из предыдущих пунктах этой статьи). Тогда 1 024:32=(960+64):32= 960:32+64:32=30+2=32 .

Осталось выполнить проверку полученного результата. Для этого умножим полученное частное 32 на делитель 32 , имеем 32·32=1 024 . Полученное число совпадает с делимым, поэтому частное вычислено правильно.

Ответ:

1 024:32=32 .

Проверка результата деления натуральных чисел делением

Проверить результат деления натуральных чисел можно не только при помощи умножения, но и при помощи деления. Сформулируем правило, позволяющее проводить проверку результата деления делением.

Чтобы проверить, правильно ли найдено частное от деления двух натуральных чисел, нужно делимое разделить на полученное частное . При этом, если получается число, равное делителю, то деление выполнено верно, в противном случае, где-то в вычислениях была допущена ошибка.

Это правило основано на достаточно очевидной связи делимого, делителя и частного. Проследить эту связь нам помогут следующие рассуждения. Пусть мы разделили a предметов в b кучек, после чего в каждой кучке оказалось c предметов в каждой. Понятно, что если эти a предметов разложить в кучки по c предметов в каждой, то таких кучек получится b штук. Таким образом, если a:b=c , то a:c=b , аналогично, если a:c=b , то a:b=c . Об этом же мы упоминали выше в пункте .

Осталось рассмотреть несколько примеров проверки результата деления натуральных чисел при помощи деления.

Пример.

При делении натурального числа 104 на 13

  • Математика. Любые учебники для 1, 2, 3, 4 классов общеобразовательных учреждений.
  • Математика. Любые учебники для 5 классов общеобразовательных учреждений.

Деление столбиком (также можно встретить название деление уголком) — стандартная процедура в арифметике, предназначенная для деления простых или сложных многозначных чисел за счёт разбивания деления на ряд более простых шагов. Как и во всех задачах на деление, одно число, называемое делимым , делится на другое, называемое делителем , производя результат, называемый частным .

Столбиком можно проводить как деление натуральных чисел без остатка, так и деление натуральных чисел с остатком.

Правила записи при делении столбиком.

Начнем с изучения правил записи делимого, делителя, всех промежуточных выкладок и результатов при делении натуральных чисел столбиком. Сразу скажем, что письменно выполнять деление столбиком удобнее всего на бумаге с клетчатой разлиновкой - так меньше шансов сбиться с нужной строки и столбца.

Сначала в одной строке слева направо записываются делимое и делитель, после чего между записанными числами изображается символ вида .

Например , если делимым является число 6105, а делителем 55, то их правильная запись при делении в столбик будет такой:

Посмотрите на следующую схему, иллюстрирующую места для записи делимого, делителя, частного, остатка и промежуточных вычислений при делении столбиком:

Из приведенной схемы видно, что искомое частное (или неполное частное при делении с остатком) будет записано ниже делителя под горизонтальной чертой. А промежуточные вычисления будут вестись ниже делимого, и нужно заранее позаботиться о наличии места на странице. При этом следует руководствоваться правилом: чем больше разница в количестве знаков в записях делимого и делителя, тем больше потребуется места.

Деление столбиком натурального числа на однозначное натуральное число, алгоритм деления столбиком.

Как делить в столбик лучше всего объяснить на примере. Вычислить :

512:8=?

Для начала запишем делимое и делитель в столбик. Выглядеть это будет так:

Их частное (результат) будем записывать под делителем. У нас это цифра 8.

1. Определяем неполное частное. Сначала мы смотрим на первую слева цифру в записи делимого. Если число, определяемое этой цифрой, больше делителя, то в следующем пункте нам предстоит работать с этим числом. Если же это число меньше, чем делитель, то нам нужно добавить к рассмотрению следующую слева цифру в записи делимого, и работать дальше с числом, определяемым двумя рассматриваемыми цифрами. Для удобства выделим в нашей записи число, с которым мы будем работать.

2. Берём 5. Цифра 5 меньше 8, значит нужно взять еще одну цифру из делимого. 51 больше 8. Значит. это неполное частное. Ставим точку в частном (под уголком делителя).

После 51 стоит только одно цифра 2. Значит и добавляем в результат ещё одну точку.

3. Теперь, вспоминая таблицу умножения на 8, находим ближайшее к 51 произведение → 6 х 8 = 48 → записываем цифру 6 в частное:

Записываем 48 под 51 (если умножить 6 из частного на 8 из делителя, получим 48).

Внимание! При записи под неполным частным самая правая цифра неполного частного должна стоять над самой правой цифрой произведения .

4. Между 51 и 48 слева поставим «-» (минус). Вычтем по правилам вычитания в столбик 48 и под чертой запишем результат.

Однако, если результатом вычитания является нуль, то его не нужно записывать (если только вычитание в этом пункте не является самым последним действием, полностью завершающим процесс деления столбиком).

В остатке получилось 3. Сравним остаток с делителем. 3 меньше 8.

Внимание! Если остаток получился больше делителя, значит мы ошиблись в расчете и есть произведение более близкое, чем то, которое взяли мы.

5. Теперь под горизонтальной чертой справа от находящихся там цифр (или справа от места, где мы не стали записывать нуль) записываем цифру, расположенную в том же столбце в записи делимого. Если же в записи делимого в этом столбце нет цифр, то деление столбиком на этом заканчивается.

Число 32 больше 8. И опять по таблице умножения на 8, найдем ближайшее произведение → 8 x 4 = 32:

В остатке получился ноль. Значит, числа разделились нацело (без остатка). Если после последнего вычитания получается ноль, а цифр больше не осталось, то это остаток. Его дописываем к частному в скобках (например, 64(2)).

Деление столбиком многозначных натуральных чисел.

Деление на натуральное многозначное число производится аналогично. При этом, в первое «промежуточное» делимое включается столько старших разрядов, чтобы оно получилось больше делителя.

Например , 1976 разделим на 26.

  • Число 1 в старшем разряде меньше 26, поэтому рассмотрим число, составленное из цифр двух старших разрядов - 19.
  • Число 19 также меньше 26, поэтому рассмотрим число, составленное из цифр трех старших разрядов - 197.
  • Число 197 больше 26, делим 197 десятков на 26: 197: 26 = 7 (15 десятков осталось).
  • Переводим 15 десятков в единицы, добавляем 6 единиц из разряда единиц, получаем 156.
  • 156 делим на 26, получаем 6.

Значит, 1976: 26 = 76.

Если на каком-то шаге деления «промежуточное» делимое оказалось меньше делителя, то в частном записывается 0, а число из данного разряда переводится в следующий, более младший разряд.

Деление с десятичной дробью в частном.

Десятичные дроби онлайн. Перевод десятичных дробей в обычные и обычных дробей в десятичные.

Если натуральное число не делится нацело на однозначное натуральное число, можно продолжить поразрядное деление и получить в частном десятичную дробь.

Например , 64 разделим на 5.

  • 6 десятков делим на 5, получаем 1 десяток и 1 десяток в остатке.
  • Оставшийся десяток переводим в единицы, добавляем 4 из разряда единиц, получаем 14.
  • 14 единиц делим на 5, получаем 2 единицы и 4 единицы в остатке.
  • 4 единицы переводим в десятые, получаем 40 десятых.
  • 40 десятых делим на 5, получаем 8 десятых.

Значит, 64: 5 = 12,8

Таким образом, если при делении натурального числа на натуральное однозначное или многозначное число получается остаток, то можно поставить в частном запятую, остаток перевести в единицы следующего, меньшего разряда и продолжать деление.

В рамках этой статьи мы изучим общие представления, связанные с делением натуральных чисел. Их принято называть свойствами процесса деления. Мы разберем основные из них, поясним их значение и подкрепим свои рассуждения примерами.

Деление двух равных натуральных чисел

Чтобы понять, как разделить одно натуральное число на другое, равное ему, нужно вернуться к пониманию смысла самого процесса деления. От того, какой смысл мы придаем делителю, зависит конечный результат. Разберем два возможных варианта.

Итак, мы имеем a предметов (a – произвольно взятое натуральное число). Распределим предметы по группам поровну, при этом число групп должно быть равно a. Очевидно, что в каждой группе при этом будет всего один предмет.

Переформулируем немного иначе: как распределить a предметов в группы по a предметов в каждой? Сколько групп получится в итоге? Конечно, всего одна.

Подведем итоги и выведем первое свойство деления натуральных чисел одинаковой величины:

Определение 1

Деление натурального числа на равное ему дает в итоге единицу. Иначе говоря, a: a = 1 (a – любое натуральное число).

Разберем для наглядности два примера:

Пример 1

Если 450 разделить на 450 , будет 1 . Если 67 разделить на 67 , получится 1 .

Как видно, от конкретных цифр тут ничего не зависит, результат будет один и тот же при условии равенства делимого и делителя.

Деление натурального числа на единицу

Как и в предыдущем пункте, начнем с задач. Допустим, что у нас имеются любые предметы в количестве, равном a . Необходимо разделить их на некоторое количество частей по одному предмету в каждой. Понятно, что у нас выйдет a частей.

А если мы спросим: сколько предметов будет в группе, если в нее поместить a предметов? Ответ очевиден – a .

Таким образом, мы подходим к формулированию свойства деления натуральных чисел на 1:

Определение 2

При делении любого натурального числа на единицу получится то же самое число, то есть a: 1 = a .

Разберем 2 примера:

Пример 2

Если разделить 25 на 1 , получится 25 .

Пример 3

Если разделить 11 345 на 1 , результатом будет 11 345 .

Отсутствие переместительного свойства для деления натуральных чисел

В случае с умножением мы свободно можем поменять множители местами и получить тот же результат, однако на деление это правило не распространяется. Менять местами делимое и делитель можно только в случае, если они являются равными натуральными числами (это свойство мы уже рассматривали в первом пункте). То есть можно сказать, что переместительное свойство распространяется только на случай, если в делении участвуют равные натуральные числа.

В остальных случаях менять местами делимое с делителем нельзя, поскольку это приведет к искажению результата. Объясним подробнее, почему.

Разделять любые натуральные числа на другие, также произвольно взятые, мы можем не всегда. Например, если делимое меньше делителя, то такой пример решить мы не можем (как делить натуральные числа с остатком, мы разберем в отдельном материале). Иными словами, если некоторое натуральное число, равное a , мы можем разделить на b ? И их значения при этом не равны, то a будет больше b , а запись b: a смысла иметь не будет. Выведем правило:

Определение 3

Деление суммы 2-х натуральных чисел на другое натуральное число

Чтобы лучше объяснить это правило, возьмем наглядные примеры.

У нас есть группа детей, между которыми надо поровну разделить мандарины. Фрукты сложены в два пакета. Возьмем условие, что количество мандаринов таково, что можно поделить их на всех детей без остатка. Можно пересыпать мандарины в один общий пакет, а потом поделить и раздать. А можно поделить сначала фрукты из одного пакета, а потом из другого. Очевидно, что и в том, и в другом случае никто не будет в обиде и все будет разделено поровну. Следовательно, мы можем сказать:

Определение 4

Результат деления суммы 2 -х натуральных чисел на другое натуральное число равен результату сложения частных от деления каждого слагаемого на то же натуральное число, т.е. (a + b) : c = a: c + b: c . При этом значения всех переменных – это натуральные числа, значение a можно разделить на c , и b также можно разделить на c без остатка.

У нас получилось равенство, в правой части которого первым выполняется деление, а вторым – сложение (вспомним, как правильно выполнять арифметические действия по порядку).

Докажем справедливость получившегося равенства на примере.

Пример 4

Возьмем для него подходящие натуральные числа: (18 + 36) : 6 = 18: 6 + 36: 6 .

Теперь вычислим и узнаем, верное ли оно. Подсчитаем значение левой части: 18 + 36 = 54 , и (18 + 36) : 6 = 54: 6 .

Результат мы помним из таблицы умножения (если забыли, найдите в ней нужное значение): 54: 6 = 9 .

Вспоминаем, сколько будет 18: 6 = 3 и 36: 6 = 6 . Значит, 18: 6 + 36: 6 = 3 + 6 = 9 .

Получается верное равенство: (18 + 36) : 6 = 18: 6 + 36: 6 .

Сумма натуральных чисел, которая стоит в примере в качестве делимого, может быть не только 2 , но и 3 и больше. Это свойство в комбинации с сочетательным свойством сложения натуральных чисел дает нам возможность выполнять и такие подсчеты.

Пример 5

Так, (14 + 8 + 4 + 2) : 2 будет равно 14: 2 + 8: 2 + 4: 2 + 2: 2 .

Деление разности 2-х натуральных чисел на другое натуральное число

Подобным образом можно вывести правило для разности натуральных чисел, которую мы будем делить на другое натуральное число:

Определение 5

Результат деления разности двух натуральных чисел на третье равен тому, что мы получим, отняв от частного уменьшаемого и третьего числа частное вычитаемого и третьего числа.

Т.е. (a - b) : c = a: c – b: c . Значения переменных – натуральные числа, при этом a больше b или равно ему, a и b можно разделить на c .

Докажем справедливость этого правила на примере.

Пример 6

Подставим подходящие значения в равенство и вычислим: (45 - 25) : 5 = 45: 5 - 25: 5 . 45 - 25 = 20 (о том, как находить разность натуральных чисел, мы уже писали ранее). (45 - 25) : 5 = 20: 5 .

По таблице умножения вспоминаем, что результат будет равен 4 .

Считаем правую часть: 45: 5 - 25: 5 . 45: 5 = 9 , а 25: 5 = 5 , в итоге 45: 5 - 25: 5 = 9 - 5 = 4 . 4 = 4 , выходит, что (45 - 25) : 5 = 45: 5 - 25: 5 – верное равенство.

Деление произведения двух натуральных чисел на другое натуральное число

Вспомним о том, какая связь существует между делением и умножением, тогда свойство деления произведения на натуральное число, равное одному из множителей, будет нам очевидно. Выведем правило:

Определение 6

Если разделить произведение двух натуральных чисел на третье, равное одному из множителей, в итоге мы получим число, равное другому множителю.

В буквенном виде это можно записать как (a · b) : a = b или (a · b) : b = a (значения a и b представляют собой натуральные числа).

Пример 7

Так, результат деления произведения 2 и 8 на 2 будет равен 8 , а (3 · 7) : 7 = 3 .

А как быть в случае, если делитель не равен ни одному из множителей, которые образуют делимое? Тогда здесь действует другое правило:

Определение 7

Результат деления произведения двух натуральных чисел на третье натуральное число равен тому, что получится, если разделить на это число один из множителей и результат умножить на другой множитель.

Мы получили весьма неочевидное на первый взгляд утверждение. Однако если учесть, что умножение натуральных чисел, по сути, сводится к сложению равных по значению слагаемых (см. материал об умножении натуральных чисел), то можно вывести этой свойство из другого, о котором мы говорили чуть выше.

Запишем это правило в буквенном виде (значения всех переменных – натуральные числа).

Если a мы можем разделить на c , то будет верно (a · b) : c = (a: c) · b .

Если b делится на c , то верно (a · b) : c = a · (b: c) .

Если и a , и b делятся на c , то можем приравнять одно равенство к другому: (a · b) : c = (a: c) · b = a · (b: c) .

С учетом рассмотренного выше свойства деления произведения на другое натуральное число будут верны равенства (8 · 6) : 2 = (8: 2) · 6 и (8 · 6) : 2 = 8 · (6: 2) .

Мы можем записать их в виде двойного равенства: (8 · 6) : 2 = (8: 2) · 6 = 8 · (6: 2) .

Деление натурального числа на произведение 2-х других натуральных чисел

И вновь мы начнем с примера. У нас есть некоторое количество призов, обозначим его a . Их надо поровну распределить между участниками команд. Обозначим число участников буквой c , а команд – буквой b . При этом возьмём такие значения переменных, при которых запись деления будет иметь смысл. Задачу можно решить двумя разными способами. Рассмотрим оба.

1. Можно вычислить общее количество участников, умножив b на c , после чего разделить все призы на полученное число. В буквенном виде это решение можно записать как a: (b · c) .

2. Можно поделить сначала призы на количество команд, а потом распределить их внутри каждой команды. Запишем это как (a: b) : c .

Очевидно, что оба способа дадут нам идентичные ответы. Поэтому оба равенства мы можем приравнять друг к другу: a: (b · c) = (a: b) : c . Это и будет буквенная запись свойства деления, которое мы рассматриваем в этом пункте. Сформулируем правило:

Определение 8

Результат деления натурального числа на произведение равен числу, которое мы получим, разделив это число на один из множителей и получившееся частное разделить на другой множитель.

Пример 8

Приведем пример задачи. Докажем, что справедливо равенство 18: (2 · 3) = (18: 2) : 3 .

Подсчитаем левую часть: 2 · 3 = 6 , а 18: (2 · 3) – это 18: 6 = 3 .

Считаем правую часть: (18: 2) : 3 . 18: 2 = 9 , а 9: 3 = 3 , тогда (18: 2) : 3 = 3 .

У нас получилось, что 18: (2 · 3) = (18: 2) : 3 . Это равенство иллюстрирует нам свойство деления, которое мы привели в данном пункте.

Деление нуля на натуральное число

Что такое нуль? Ранее мы условились, что он означает отсутствие чего-либо. Нуль мы не относим к натуральным числам. Получается, что, если мы разделим нуль на натуральное число, это будет равнозначно попытке разделить пустоту на части. Понятно, что в итоге мы все равно получим «ничто», на сколько бы частей мы его не делили. Выводим отсюда правило:

Определение 9

При делении нуля на любое натуральное число мы получим нуль. В буквенном виде это записывается как 0: a = 0 , при этом значение переменной может быть любое.

Пример 9

Так, например, 0: 19 = 0 , и 0: 46869 тоже будет равно нулю.

Деление натурального числа на нуль

Это действие выполнить нельзя. Давайте выясним, почему именно.

Возьмем произвольное число a и предположим, что его можно разделить на 0 и получить в итоге некое число b . Запишем это как a: 0 = b . Теперь вспомним, как связано между собой умножение и деление, и выведем равенство b · 0 = a , которое также должно быть справедливым.

Но ранее мы уже поясняли свойство умножения натуральных чисел на ноль. Согласно ему b · 0 = 0 . Если сопоставить полученные равенства, у нас получится, что a = 0 , а это противоречит исходному условию (ведь нуль не является натуральным числом). Выходит, что у нас получилось противоречие, которое доказывает невозможность такого действия.

Определение 10

Делить натуральное число на нуль нельзя.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter