Коррозия и эрозия в котлах среднего и низкого давления со стороны топки. Наружная коррозия экранных труб Коррозия экранных труб паровых котлов

  • Дата: 19.10.2019

2.1. Поверхности нагрева.

Наиболее характерными повреждениями труб поверхностей нагрева являются: трещины поверхности экранных и кипятильных труб, коррозионные разъедания наружных и внутренних поверхностей труб, разрывы, утонения стенок труб, трещины и разрушения колокольчиков.

Причины появления трещин, разрывов и свищей: отложения в трубах котлов солей, продуктов коррозии, сварочного грата, замедляющих циркуляцию и вызывающих перегрев металла, внешние механические повреждения, нарушение водно-химического режима.

Коррозия наружной поверхности труб подразделяется на низкотемпературную и высокотемпературную. Низкотемпературная коррозия возникает в местах установки обдувочных приборов, когда в результате неправильной эксплуатации допускается образование конденсата на занесенных сажей поверхностях нагрева. Высокотемпературная коррозия может иметь место на второй ступени пароперегревателя при сжигании сернистого мазута.

Наиболее часто встречается коррозия внутренней поверхности труб, возникающая при взаимодействии коррозионноактивных газов (кислорода, углекислоты) или солей (хлоридов и сульфатов), содержащихся в котловой воде, с металлом труб. Коррозия внутренней поверхности труб проявляется в образовании оспин, язв, раковин и трещин.

К коррозии внутренней поверхности труб также относятся: кислородная стояночная коррозия, подшламовая щелочная коррозия кипятильных и экранных труб, коррозионная усталость, проявляющаяся в виде трещин в кипятильных и экранных трубах.

Повреждения труб из-за ползучести характеризуются увеличением диаметра и образованием продольных трещин. Деформации в местах гибов труб и сварных соединений могут иметь различные направления.

Прогары и окалннообразовання в трубах происходят вследствие их перегрева до температур, превышающих расчетную.

Основные виды повреждений сварных швов выполненных ручной дуговой сваркой - свищи, возникающие из-за непроваров, шлаковых включений, газовых пор, несплавления по кромкам труб.

Основными дефектами и повреждениями поверхности пароперегревателя являются: коррозия и окалинообразование на наружной и внутренней поверхности труб, трещины, риски и расслоение металла труб, свищи и разрывы труб, дефекты сварных соединений труб, остаточная деформация в результате ползучести.

Повреждения угловых швов приварки змеевиков и штуцеров к коллекторам, вызывающие нарушением технологии сварки, имеют вид кольцевых трещин вдоль линии сплавления со стороны змеевика или штуцеров.

Характерными неисправностями, возникающими при эксплуатации поверхностного пароохладителя котла ДЕ-25-24-380ГМ являются: внутренняя и наружная коррозия труб, трещины и свищи в сварных

швах и на гибах труб, раковины, могущие возникнуть при ремонтах, риски на зеркале фланцев, течи фланцевых соединений вследствие перекоса фланцев. При гидравлическом испытании котла можно

определить только наличие неплотностей в пароохладителе. Для выявления скрытых дефектов следует провести индивидуальное гидравлическое испытание пароохладителя.

2.2. Барабаны котла.

Характерными повреждениями барабанов котла являются: трещины-надрывы на внутренней и наружной поверхности обечаек и днищ, трещины-надрывы вокруг трубных отверстий на внутренней поверхности барабанов и на цилиндрической поверхности трубных отверстий, межкристаллитная коррозия обечаек и днищ, коррозионные разъединения поверхностей обечаек и днищ, овальность барабана оддулины (выпучины) на поверхностях барабанов, обращенных в топку, вызванные температурным воздействием факела в случаях разрушения (или выпадения) отдельных частей футеровки.

2.3. Металлоконструкции и обмуровка котла.

В зависимости от качества профилактической работы, а также от режимов и сроков эксплуатации котла, его металлоконструкции могут иметь следующие дефекты и повреждения: разрывы и изгибы стоек и связей, трещины, коррозионные повреждения поверхности металла.

В результате длительного воздействия температур имеют место растрескивание и нарушение целостности фасонного кирпича, закрепляемого на штырях к верхнему барабану со стороны топки, а также трещины в кирпичной кладке по нижнему барабану и поду топки.

Особенно часто встречается разрушение кирпичной амбразуры горелки и нарушение геометрических размеров за счет оплавления кирпича.

3. Проверки состояния элементов котла.

Проверка состояния элементов котла, выведенного в ремонт, производится по результатам гидравлического испытания, наружного и внутреннего осмотра, а также других видов контроля, проводимых в объеме и соответствии с программой экспертного обследования котла (раздел «Программа экспертного обследования котлов»).

3.1. Проверка поверхностей нагрева.

Осмотр наружных поверхностей трубных элементов особенно тщательно необходимо производить в местах прохода труб через обмуровку, обшивку, в зонах максимальных тепловых напряжении - в районе горелок, лючков, лазов, а также в местах гибов экранных труб и на сварных швах.

Для предупреждения аварии, связанных с утонением стенок труб вследствие сернистой и стояночной коррозии, необходимо при ежегодных технических освидетельствованиях, проводимых администрацией предприятия, производить контроль труб поверхностей нагрева котлов, эксплуатируемых более двух лет.

Контроль производится внешним осмотром с обстукиванием предварительно очищенных наружных поверхностей труб молотком массой не более 0,5 кг и измерением толщины стенок труб. При этом следует выбирать участки труб, подвергшиеся наибольшему износу и коррозии (горизонтальные участки, участки в отложениях сажи и покрытые коксовыми отложениями).

Измерение толщины стенок труб производится ультразвуковыми толщиномерами. Возможно вырезание участков труб на двух-трех трубах топочных экранов и трубах конвективного пучка, расположенных на входе газов в него и выходе. Оставшаяся толщина стенок труб должна быть не менее расчетной согласно расчету на прочность (прилагаемого к Паспорту котла) с учетом прибавки на коррозию на период дальнейшей эксплуатации до следующего освидетельствования и прибавки запаса 0,5 мм.

Расчетная толщина стенки экранных и кипятильных труб для рабочего давления 1,3 МПа (13 кгс/см 2) составляет 0,8 мм, для 2,3 МПа (23 кгс/см 2) – 1,1 мм. Прибавка на коррозию принимается по полученным результатам замеров и с учетом длительности эксплуатации между освидетельствованиями.

На предприятиях, где в результате длительной эксплуатации не наблюдалось интенсивного износа труб поверхностей нагрева, контроль толщины стенок труб может производится при капитальных ремонтах, но не реже 1 раза в 4 года.

Внутреннему осмотру подлежат коллектора, пароперегревателя и заднего, экрана. Обязательному вскрытию и осмотру должны быть подвергнуты лючки верхнего коллектора заднего экрана.

Наружный диаметр труб должен измеряться в зоне максимальных температур. Для измерений применять специальные шаблоны (скобы) или штангенциркуль. На поверхности труб допускаются вмятины с плавными переходами глубиной не более 4 мм, если они не выводят толщину стенки за пределы минусовых отклонений.

Допускаемая разностенность труб - 10%.

Результаты осмотра и измерений заносятся в ремонтный формуляр.

3.2. Проверка барабана.

Дня выявления участков барабана, поврежденных коррозией, необходимо осмотреть поверхность до внутренней очистки с целью определения интенсивности коррозии измерить глубину разъедания металла.

Равномерные разъедания измерить по толщине стенки, в которой для этой цели просверлить отверстие диаметром 8 мм. После измерения в отверстие установить пробку и обварить с двух сторон или, в крайнем случае, только изнутри барабана. Измерение можно также производить ультразвуковым толщиномером.

Основные разъедания и язвины измерить, по оттискам. Для этой цели поврежденный участок поверхности металла очистить от отложений и слегка смазать техническим вазелином. Наиболее точный отпечаток получается, если поврежденный участок расположен на горизонтальной поверхности и в этом случае имеется возможность залить его расплавленным металлом с низкой температурой плавления. Затвердевший металл образует точный слепок поврежденной поверхности.

Для получения отпечатков, пользоваться третником, баббитом, оловом, по возможности применять гипс.

Оттиски повреждений, расположенных на вертикальных потолочных поверхностях, получить, используя воск и пластилин.

Осмотр трубных отверстий, барабанов проводится в следующем порядке.

После удаления развальцованных труб проверить диаметр отверстий при помощи шаблона. Если шаблон входит в отверстие до упорного выступа, то это означает, что диаметр отверстия увеличен сверх нормы. Измерение точной величины диаметра осуществляется штангенциркулем и отмечается в ремонтном формуляре.

При контроле сварных швов барабанов необходимо подвергать проверке прилегающий к ним основной металл на ширину 20-25 мм по обе стороны от шва.

Овальность барабана измеряется не менее чем через каждые 500 мм по длине барабана, в сомнительных случаях и чаще.

Измерение прогиба барабана осуществляется путем натяжки струны вдоль поверхности барабана и замера зазоров по длине струны.

Контроль поверхности барабана, трубных отверстий и сварных соединений производится внешним осмотром, методами, магнитопорошковой, цветной и ультразвуковой дефектоскопии.

Допускаются (не требуют выправки) отдулины и вмятины вне зоны швов и отверстий при условии, что их высота (прогиб), в процентах от наименьшего размера их основания, будет не более:

    в сторону атмосферного давления (отдулины) - 2%;

    в сторону давления пара (вмятины) - 5%.

Допускаемое уменьшение толщины стенки днища - 15%.

Допускаемое увеличение диаметра отверстий для труб (под сварку) - 10%.

  • Галустов В.С. Прямоточные распылительные аппараты в теплоэнергетике (Документ)
  • Филонов А.Г. Водно-химические режимы теплоэнергетических установок (Документ)
  • Физико-химические процессы в техносфере. Сборник задач (Документ)
  • Орлов Д.С. Химия почв (Документ)
  • n1.doc

    3.4. Коррозия элементов парогенераторов
    3.4.1. Коррозия парообразующих труб и барабанов парогенераторов
    во время их эксплуатации

    Коррозионные повреждения металлов парогенераторов обусловлены действием одного или нескольких факторов: чрезмерного теплонапряжения поверхности нагрева, вялой циркуляции воды, застоя пара, напряженного металла, отложения примесей и других факторов, препятствующих нормальному омыванию и охлаждению поверхности нагрева.

    При отсутствии этих факторов нормальная магнетитная пленка легко образуется и сохраняется в воде с нейтральной или умеренно щелочной реакцией среды, не содержащей растворенного кислорода. В присутствии же О 2 кислородной коррозии могут подвергаться входные участки водяных экономайзеров, барабаны и опускные трубы циркуляционных контуров. Особенно отрицательно сказываются малые скорости движения воды (в водяных экономайзерах, так как при этом пузырьки выделяющегося воздуха задерживаются в местах шероховатостей внутренней поверхности труб и вызывают интенсивную местную кислородную коррозию. Коррозия углеродистой стали в водной среде при высоких температурах включает две стадии: начальную электрохимическую и конечную химическую. Согласно этому механизму коррозии, ионы двухвалентного железа диффундируют через окисную пленку к поверхности контакта ее с водой, реагируют с гидроксилом или с водой с образованием гидрата закиси железа, который затем распадается на магнетит и водород по реакции:


    .

    (2.4)

    Электроны, проходящие наряду с ионами железа через окисную пленку, ассимилируются ионами водорода с выделением Н 2 . С течением времени толщина окисной пленки увеличивается, а диффузия через нее затрудняется. Вследствие этого наблюдается уменьшение скорости коррозии со временем.

    Нитритная коррозия. При наличии в питательной воде нитрита натрия наблюдается коррозия металла парогенератора, имеющая по внешнему виду большое сходство с кислородной коррозией. Однако в отличие от нее нитритная коррозия поражает не входные участки опускных труб, а внутреннюю поверхность теплонапряженных подъемных труб и вызывает образование более глубоких язвин диаметром до 15–20 мм. Нитриты ускоряют протекание катодного процесса, а тем самым и коррозию металла парогенератора. Течение процесса при нитритной коррозии может быть описано следующей реакцией:


    .

    (2.5)

    Гальванокоррозия металла парогенератора. Источником гальванокоррозии парообразующих труб может явиться медь, попадающая в парогенераторы в тех случаях, когда питательная вода, содержащая повышенное количество аммиака, кислорода и свободной углекислоты, агрессивно воздействует на латунные и медные трубы регенеративных подогревателей. Необходимо отметить, что гальванокоррозию может вызвать лишь металлическая медь, отложившаяся на стенках парогенератора. При поддержании значения рН питательной воды выше 7,6 медь поступает в парогенераторы в форме окислов или комплексных соединений, которые не обладают коррозионно-агрессивными свойствами и отлагаются на поверхностях нагрева в виде шлама. Ионы меди, присутствующие в питательной воде с низким значением рН, попадая далее в парогенератор, в условиях щелочной среды также осаждаются в виде шламообразных окислов меди. Однако под действием выделяющегося в парогенераторах водорода или избытка сульфита натрия окислы меди могут полностью восстанавливаться до металлической меди, которая, отложившись на поверхностях нагрева, приводит к электрохимической коррозии металла котла.

    Подшламовая (ракушечная) коррозия . Подшламовая коррозия возникает в застойных зонах циркуляционного контура парогенератора под слоем шлама, состоящего из продуктов коррозии металлов и фосфатной обработки котловой воды. Если эти отложения сосредоточены на обогреваемых участках, то под ними возникает интенсивное упаривание, повышающее солесодержание и щелочность котловой воды до опасных значений.

    Подшламовая коррозия распространяется в виде больших язвин диаметром до 50–60 мм на внутренней стороне парообразующих труб, обращенной к факелу топки. В пределах язвин наблюдается сравнительно равномерное уменьшение толщины стенки трубы, часто приводящее к образованию свищей. На язвинах обнаруживается плотный слой окислов железа в виде ракушек. Описанное разрушение металла получило в литературе название «ракушечной» коррозии. Подшламовая коррозия, вызываемая окислами трехвалентного железа и двухвалентной меди, является примером комбинированного разрушения металла; первая стадия этого процесса является чисто электрохимической, а вторая – химической, обусловленной действием воды и водяного пара на перегретые участки металла, находящиеся под слоем шлама. Наиболее эффективным средством борьбы с «ракушечной» коррозией парогенераторов является предотвращение возникновения коррозии тракта питательной воды и выноса из него окислов железа и меди с питательной водой.

    Щелочная коррозия. Расслоение пароводяной смеси, которое имеет место в горизонтальных или слабонаклонных парообразующих трубах, как известно, сопровождается образованием паровых мешков, перегревом металла и глубоким упариванием пленки котловой воды. Образовавшаяся при упаривании котловой воды высококонцентрированная пленка содержит в растворе значительное количество щелочи. Едкий натр, присутствующий в котловой воде в малых концентрациях, защищает металл от коррозии, но он становится весьма опасным коррозионным фактором, если на каких-либо участках поверхности парогенератора создаются условия для глубокого упаривания котловой воды с образованием повышенной концентрации NaOH.

    Концентрация едкого натра в упариваемой пленке котловой воды зависит:

    А) от степени перегрева стенки парообразующей трубы по сравнению с температурой кипения при данном давлении в парогенераторе, т.е. величины?t s ;

    Б) величин соотношений концентрации едкого натра и содержащихся в циркулирующейся воде натриевых солей, обладающих способностью сильно повышать температуру кипения воды при данном давлении.

    Если концентрация хлоридов в котловой воде значительно превышает в эквивалентном отношении концентрацию NaOH, то раньше чем последняя достигает в упаривающейся пленке опасных значений, содержание хлоридов в ней настолько возрастает, что температура кипения раствора превышает температуру перегретой стенки трубы, и дальнейшее выпаривание воды прекращается. Если же котловая вода содержит преимущественно едкий натр, то при величине?t s = 7 °С концентрация NaOH в пленке концентрированной воды составляет 10 %, а при
    ?t s = 30 °C достигает 35 %. Между тем экспериментальным путем установлено, что уже 5–10-процентные растворы едкого натра при температуре котловой воды выше 200 °С способны интенсивно корродировать металл обогреваемых участков и сварных швов с образованием рыхлой магнитной закись-окиси железа и одновременным выделением водорода. Щелочная коррозия имеет избирательный характер, продвигаясь вглубь металла преимущественно по зернам перлита и образуя сетку межкристаллитных трещин. Концентрированный раствор едкого натра способен при высоких температурах также растворять защитный слой окислов железа с образованием феррита натрия NaFeO 2 , который гидролизуется с образованием щелочи:




    (2.6)



    (2.7)

    Вследствие того, что щелочь в этом круговом процессе не расходуется, создается возможность непрерывного протекания коррозионного процесса. Чем выше температура котловой воды и концентрация едкого натра, тем интенсивнее протекает процесс щелочной коррозии. Установлено, что концентрированные растворы едкого натра не только разрушают защитную магнетитную пленку, но и тормозят ее восстановление после повреждения.

    Источником щелочной коррозии парогенераторов могут также явиться шламоотложения, способствующие глубокому упариванию котловой воды с образованием высококонцентрированного коррозионно-агрессивного раствора щелочи. Уменьшение относительной доли щелочи в общем солесодержании котловой воды и создание преобладающего содержания в последней таких солей, как хлориды, способны резко ослабить щелочную коррозию котельного металла. Устранение щелочной коррозии достигается также обеспечением чистоты поверхности нагрева и интенсивной циркуляцией на всех участках парогенератора, которая предотвращает глубокое упаривание воды.

    Межкристаллитная коррозия. Межкристаллитная коррозия появляется в результате взаимодействия котельного металла со щелочной котловой водой. Характерная особенность межкристаллитных трещин в том, что они возникают в местах наибольших напряжений в металле. Механические напряжения слагаются из внутренних напряжений, возникающих в процессе изготовления и монтажа парогенераторов барабанного типа, а также дополнительных напряжений, возникающих в процессе эксплуатации. Образованию межкристаллитных кольцевых трещин на трубах способствуют дополнительные статические механические напряжения. Они возникают в трубных контурах и в барабанах парогенератора при недостаточной компенсации температурных удлинений, а также вследствие неравномерного обогрева или охлаждения отдельных участков тела барабана или коллектора.

    Межкристаллитная коррозия протекает с некоторым ускорением: в начальный период разрушение металла происходит очень медленно и без деформации, а затем с течением времени скорость его резко возрастает и может принять катастрофические размеры. Межкристаллитную коррозию котельного металла нужно рассматривать прежде всего как частный случай электрохимической коррозии, протекающей по границам зерен напряженного металла, находящегося в контакте со щелочным концентратом котловой воды. Появление коррозионных микрогальванических элементов вызывается различием потенциалов между телами кристаллитов, выполняющих роль катодов. Роль анодов выполняют разрушающиеся грани зерен, потенциал которых вследствие механических напряжений металла в этом месте сильно понижен.

    Наряду с электрохимическими процессами существенную роль в развитии межкристаллитной коррозии играет атомарный водород, продукт разряда
    Н + -ионов на катоде коррозионных элементов; легко диффундируя в толщу стали, он разрушает карбиды и создает большие внутренние напряжения в металле котла вследствие появления в нем метана, что приводит к образованию тонких межкристаллитных трещин (водородное растрескивание). Кроме того, во время реакции водорода с включениями стали образуются различные газообразные продукты, что в свою очередь вызывает дополнительные разрывные усилия и способствует разрыхлению структуры, углублению, расширению и разветвлению трещин.

    Основным путем предотвращения водородной коррозии металла котла является устранение любых коррозионных процессов, приводящих к образованию атомарного водорода. Это достигается ослаблением наноса в парогенераторе окислов железа и меди, химической очисткой котлов, улучшением циркуляции воды и снижением местных повышенных тепловых нагрузок поверхности нагрева.

    Установлено, что межкристаллитная коррозия котельного металла в соединениях элементов парогенераторов возникает лишь при одновременном наличии местных растягивающих напряжений, близких или превышающих предел текучести, и при концентрации NаОН в котловой воде, накапливающейся в неплотностях соединений элементов котла, превышающей 5–6 %. Для развития межкристаллитных разрушений котельного металла существенное значение имеет не абсолютная величина щелочности, а доля едкого натра в общем солевом составе котловой воды. Установлено опытным путем, что если эта доля, т. е. относительная концентрация едкого натра в котловой воде составляет менее 10–15 % от суммы минеральных растворимых веществ, то такая вода, как правило, не является агрессивной.

    Пароводяная коррозия. В местах с дефективной циркуляцией, где пар застаивается и не сразу отводится в барабан, стенки труб под паровыми мешками подвергаются сильному местному перегреву. Это приводит к химической коррозии перегретого до 450 °С и выше металла парообразующих труб под действием высокоперегретого пара. Процесс коррозии углеродистой стали в высокоперегретом водяном паре (при температуре 450 – 470 °С) сводится к образованию Fe 3 O 4 и газообразного водорода:




    (2.8.)

    Отсюда следует, что критерием интенсивности пароводяной коррозии металла котла является увеличение содержания свободного водорода в насыщенном паре. Пароводяная коррозия парообразующих труб наблюдается, как правило, в зонах резкого колебания температуры стенки, где имеют место теплосмены, вызывающие разрушение защитной окисной пленки. При этом создается возможность непосредственного контакта перегретого металла трубы с водой или водяным паром и химического взаимодействия между ними.

    Коррозионная усталость. В барабанах парогенераторов и котельных трубах в том случае, если на металл воздействуют одновременно с коррозионной средой термические напряжения, переменные по знаку и величине, появляются глубоко проникающие в сталь трещины коррозионной усталости, которые могут иметь транскристаллитный, межкристаллитный либо смешанный характер. Как правило, растрескиванию котельного металла предшествует разрушение защитной окисной пленки, что ведет к значительной электрохимической неоднородности и, как следствие, к развитию местной коррозии.

    В барабанах парогенераторов трещины коррозионной усталости возникают при попеременном нагреве и охлаждении металла на небольших участках в местах соединения трубопроводов (питательной воды, периодической продувки, ввода раствора фосфата) и водоуказательных колонок с телом барабана. Во всех этих соединениях металл барабана охлаждается, если температура протекающей по трубе питательной воды меньше температуры насыщения при давлении в парогенераторе. Местное охлаждение стенок барабана с последующим обогревом их горячей котловой водой (в моменты прекращения питания) всегда сопряжено с появлением в металле высоких внутренних напряжений.

    Коррозионное растрескивание стали резко усиливается в условиях попеременного смачивания и высыхания поверхности, а также в тех случаях, когда движение по трубе пароводяной смеси имеет пульсирующий характер, т. е. часто и резко изменяются скорость движения пароводяной смеси и ее паросодержание, а также при своеобразном расслоении пароводяной смеси на отдельные «пробки» пара и воды, следующие друг за другом.

    3.4.2. Коррозия пароперегревателей
    Скорость пароводяной коррозии определяется преимущественно температурой пара и составом контактирующего с ним металла. Существенное значение в ее развитии имеют также величины теплообмена и температурных колебаний при работе пароперегревателя, вследствие которых может наблюдаться разрушение защитных окисных пленок. В среде перегретого пара с температурой больше
    575 °С на поверхности стали в результате пароводяной коррозии образуется FeO (вюстит):

    Установлено, что трубы, изготовленные из обычной малоуглеродистой стали, находясь в течение длительного времени под воздействием высокоперегретого пара, равномерно разрушаются с одновременным перерождением структуры металла и образованием плотного слоя окалины. В парогенераторах сверхвысокого и сверхкритического давлений при температуре перегрева пара 550 °С и выше наиболее теплонапряженные элементы пароперегревателя (выходные участки) обычно изготовляют из теплостойких аустенитных нержавеющих сталей (хромоникелевых, хромомолибденовых и др.). Эти стали в условиях совместного действия растягивающих напряжений и коррозионно-агрессивной среды подвержены растрескиванию. Большинство эксплуатационных повреждений пароперегревателей, характеризующихся коррозионным растрескиванием элементов из аустенит-ных сталей, обусловлено присутствием в паре хлоридов и едкого натра. Борьба с коррозионным растрескиванием деталей из аустенитных сталей осуществляется главным образом посредством поддержания безопасного водного режима парогенераторов.
    3.4.3. Стояночная коррозия парогенераторов
    При простоях парогенераторов или другого паросилового оборудования в холодном или горячем резерве либо на ремонте на поверхности металла под действием кислорода воздуха или влаги развивается так называемая стояночная коррозия. По этой причине простои оборудования без применения должных защитных мер от коррозии часто приводят к серьезным повреждениям, особенно в парогенераторах. Сильно страдают от стояночной коррозии пароперегреватели и парообразующие трубы переходных зон прямоточных парогенераторов. Одной из причин стояночной коррозии внутренней поверхности парогенераторов является наполнение их во время простоев водой, насыщенной кислородом. В этом случае особенно подвержен коррозии металл на границе вода – воздух. Если же парогенератор, оставленный на ремонт, полностью дренируется, то на внутренней поверхности его всегда остается пленка влаги при одновременном доступе кислорода, который, легко диффундируя через эту пленку, вызывает активную электрохимическую коррозию металла. Тонкая пленка влаги сохраняется довольно долго, так как атмосфера внутри парогенератора насыщена парами воды, особенно в том случае, если в него попадает пар через неплотности арматуры параллельно работающих парогенераторов. Если в воде, заполняющей резервный парогенератор, присутствуют хлориды, то это приводит к увеличению скорости равномерной коррозии металла, а если в ней содержится незначительное количество щелочи (меньше 100 мг/дм 3 NaOH) и кислород, то это способствует развитию язвенной коррозии.

    Развитию стояночной коррозии способствует также накапливающийся в парогенераторе шлам, который обычно удерживает влагу. По этой причине значительные коррозионные раковины – часто обнаруживаются в барабанах вдоль нижней образующей по их концам, т. е. на участках наибольшего скопления шлама. Особенно сильно подвержены коррозии участки внутренней поверхности парогенераторов, которые покрыты водорастворимыми солевыми отложениями, например змеевики пароперегревателей и переходная зона в прямоточных парогенераторах. Во время простоев парогенераторов эти отложения поглощают атмосферную влагу и расплываются с образованием на поверхности металла высококонцентрированного раствора натриевых солей, имеющего большую электропроводность. При свободном доступе воздуха процесс коррозии под солевыми отложениями протекает весьма интенсивно. Весьма существенным является то, что стояночная коррозия усиливает процесс разъедания металла котла во время работы парогенератора. Это обстоятельство следует считать главной опасностью стояночной коррозии. Образующаяся ржавчина, состоящая из окислов железа высокой валентности Fe(OH) 3 , во время работы парогенератора играет роль деполяризатора коррозионных микро- и макрогальванопар, что ведет к интенсификации коррозии металла в процессе эксплуатации агрегата. В конечном счете накопление ржавчины на поверхности металла котла приводит к подшламовой коррозии. Помимо этого, при последующем простое агрегата восстановленная ржавчина опять приобретает способность вызывать коррозию вследствие поглощения ею кислорода воздуха. Эти процессы циклически повторяются при чередовании простоев и работы парогенераторов.

    Средствами защиты парогенераторов от стояночной коррозии в периоды их простоя в резерве и на ремонте служат различные методы консервации.
    3.5. Коррозия паровых турбин
    Металл проточной части турбин может в процессе работы подвергаться коррозии в зоне конденсации пара, особенно при наличии в нем угольной кислоты, растрескиванию вследствие наличия в паре коррозионных агентов и стояночной коррозии при нахождении турбин в резерве или на ремонте. Особенно сильно подвергается стояночной коррозии проточная часть турбины при наличии в ней солевых отложений. Образующийся во время простоя турбины солевой раствор ускоряет развитие коррозии. Отсюда вытекает необходимость тщательной очистки от отложений лопаточного аппарата турбины перед длительным простоем ее.

    Коррозия в период простоя обычно имеет сравнительно равномерный характер, при неблагоприятных условиях она проявляется в виде многочисленных язвин, равномерно распределенных по поверхности металла. Местом протекания ее являются те ступени, где конденсируется влага, агрессивно воздействующая на стальные детали проточной части турбины.

    Источником появления влаги является прежде всего конденсация пара, заполняющего турбину после ее остановки. Конденсат частично остается на лопатках и диафрагмах, частично стекает и скапливается в корпусе турбины, так как он не отводится через дренажи. Количество влаги внутри турбины может увеличиваться вследствие просачивания пара из паропроводов отборов и противодавления. Внутренние части турбины всегда холоднее поступающего в турбину воздуха. Относительная влажность воздуха машинного зала весьма высока, поэтому достаточно незначительного охлаждения воздуха, чтобы наступила точка росы, и произошло выделение влаги на металлических деталях.

    Для устранения стояночной коррозии паровых турбин необходимо исключить возможность попадания пара в турбины во время нахождения их в резерве как со стороны паропровода перегретого пара, так и со стороны магистрали отборов, дренажных линий и т. д. Для поддержания поверхности лопаток, дисков и ротора в сухом виде применяется периодическое продувание внутренней полости резервной турбины потоком горячего воздуха (t = 80 ч 100 °C), подаваемого небольшим вспомогательным вентилятором через нагреватель (электрический или паровой).
    3.6. Коррозия конденсаторов турбин
    В условиях эксплуатации паросиловых установок нередко наблюдаются случаи коррозионных повреждений латунных конденсаторных труб как с внутренней стороны, омываемой охлаждающей водой, так и с наружной стороны. Интенсивно корродируют внутренние поверхности конденсаторных труб, охлаждаемые сильно минерализованными, солено-озерными водами, содержащими большое количество хлоридов, либо оборотными циркуляционными водами с повышенной минерализацией, и загрязненными взвешенными частицами.

    Характерной особенностью латуни как конструкционного материала является склонность ее к коррозии при совместном действии повышенных механических напряжений и среды, обладающей даже умеренными агрессивными свойствами. Коррозионные повреждения проявляются в конденсаторах с латунными трубами в форме общего обесцинкования, пробочного обесцинкования, коррозионного растрескивания, ударной коррозии и коррозионной усталости. На протекание отмеченных форм коррозии латуни решающее воздействие оказывает состав сплава, технология изготовления конденсаторных труб и характер контактируемой среды. Вследствие обесцинкования разрушение поверхности латунных труб может носить сплошной слоевой характер или принадлежать к так называемому пробочному типу, являющемуся наиболее опасным. Пробочное обесцинкование характеризуется углубляющимися в металл язвинами, заполненными рыхлой медью. Наличие сквозных свищей вызывает необходимость замены трубы во избежание присоса охлаждающей сырой воды в конденсат.

    Проведенные исследования, а также длительные наблюдения за состоянием поверхности конденсаторных труб в действующих конденсаторах показали, что дополнительное введение в латунь небольших количеств мышьяка заметно снижает склонность латуней к обесцинкованию. Сложные по составу латуни, дополнительно легированные оловом или алюминием, также обладают повышенной коррозионной стойкостью благодаря способности этих сплавов быстро восстанавливать защитные пленки при их механическом разрушении. Вследствие применения металлов, занимающих различные места в потенциальном ряду и электрически соединенных, в конденсаторе возникают макроэлементы. Наличие переменного температурного поля создает возможность развития коррозионно-опасных ЭДС термоэлектрического происхождения. Блуждающие токи, возникающие при заземлении вблизи постоянного тока, также могут явиться причиной интенсивной коррозии конденсаторов.

    Коррозионные повреждения конденсаторных труб со стороны конденсирующегося пара чаще всего бывают связаны с присутствием в нем аммиака. Последний, будучи хорошим комплексообразователем по отношению к ионам меди и цинка, создает благоприятные условия для обесцинкования латуни. Кроме того, аммиак обусловливает коррозионное растрескивание латунных конденсаторных труб при наличии в сплаве внутренних или внешних растягивающих напряжений, которые постепенно расширяют трещины по мере развития коррозионного процесса. Установлено, что при отсутствии кислорода и других окислителей растворы аммиака не могут агрессивно воздействовать на медь и ее сплавы; поэтому можно не опасаться аммиачной коррозии латунных труб при концентрации аммиака в конденсате до 10 мг/дм 3 и отсутствии кислорода. При наличии же даже небольшого количества кислорода аммиак разрушает латунь и другие медные сплавы при концентрации 2–3 мг/дм 3 .

    Коррозии со стороны пара в первую очередь могут подвергаться латунные трубы охладителей выпара, эжекторов и камер отсоса воздуха конденсаторов турбин, где создаются условия, благоприятствующие попаданию воздуха и возникновению местных повышенных концентраций аммиака в частично сконденсированном паре.

    Для предотвращения коррозии конденсаторных труб с водяной стороны необходимо в каждом конкретном случае при выборе металла или сплавов, пригодных для изготовления этих труб, учитывать их коррозионную стойкость при заданном составе охлаждающей воды. Особо серьезное внимание выбору коррозионностойких материалов для изготовления конденсаторных труб должно быть уделено в тех случаях, когда конденсаторы охлаждаются проточной высокоминерализованной водой, а также в условиях восполнения потерь охлаждающей воды в оборотных системах водоснабжения ТЭС, пресными водами, обладающими повышенной минерализованностью, либо загрязненными коррозионноагрессивными промышленными и бытовыми стоками.
    3.7. Коррозия оборудования подпиточного и сетевого трактов
    3.7.1. Коррозия трубопроводов и водогрейных котлов
    Ряд электростанций использует для подпитки тепловых сетей речные и водопроводные воды с низким значением рН и малой жесткостью. Дополнительная обработка речной воды на водопроводной станции обычно приводит к снижению рН, уменьшению щелочности и повышению содержания агрессивной углекислоты. Появление агрессивной углекислоты возможно также в схемах подкисления, применяемых для крупных систем теплоснабжения с непосредственным водоразбором горячей воды (2000–3000 т/ч). Умягчение воды по схеме Na катионирования повышает ее агрессивность вследствие удаления природных ингибиторов коррозии – солей жесткости.

    При плохо налаженной деаэрации воды и возможных повышениях концентраций кислорода и углекислоты из-за отсутствия дополнительных защитных мероприятий в системах теплоснабжения внутренней коррозии подвержены трубопроводы, теплообменные аппараты, аккумуляторные баки и другое оборудование.

    Известно, что повышение температуры способствует развитию коррозионных процессов, протекающих как с поглощением кислорода, так и с выделением водорода. С увеличением температуры выше 40 °С кислородная и углекислотная формы коррозии резко усиливаются.

    Особый вид подшламовой коррозии протекает в условиях незначительного содержания остаточного кислорода (при выполнении норм ПТЭ) и при количестве окислов железа более 400 мкг/дм 3 (в пересчете на Fe). Этот вид коррозии, ранее известный в практике эксплуатации паровых котлов, был обнаружен в условиях сравнительно слабого подогрева и отсутствия тепловых нагрузок. В этом случае рыхлые продукты коррозии, состоящие в основном из гидратированных трехвалентных окислов железа, являются активными деполяризаторами катодного процесса.

    При эксплуатации теплофикационного оборудования нередко наблюдается щелевая коррозия, т. е. избирательное, интенсивное коррозионное разрушение металла в щели (зазоре). Особенностью процессов, протекающих в узких зазорах, является пониженная концентрация кислорода по сравнению с концентрацией в объеме раствора и замедленный отвод продуктов коррозионной реакции. В результате накопления последних и их гидролиза возможно снижение рН раствора в щели.

    При постоянной подпитке тепловой сети с открытым водоразбором деаэрированной водой возможность образования сквозных свищей на трубопроводах полностью исключается только при нормальном гидравлическом режиме, когда во всех точках системы теплоснабжения постоянно поддерживается избыточное давление выше атмосферного.

    Причины язвенной коррозии труб водогрейных котлов и другого оборудования следующие: некачественная деаэрация подпиточной воды; низкое значение рН, обусловленное присутствием агрессивной углекислоты (до 10–15 мг/дм 3); накопление продуктов кислородной коррозии железа (Fe 2 O 3) на теплопередающих поверхностях. Повышенное содержание окислов железа в сетевой воде способствует заносу поверхностей нагрева котла железоокисными отложениями.

    Ряд исследователей признает важную роль в возникновении подшламовой коррозии процесса ржавления труб водогрейных котлов при их простоях, когда не принято должных мер для предупреждения стояночной коррозии. Очаги коррозии, возникающие под воздействием на влажные поверхности котлов атмосферного воздуха, продолжают функционировать при работе котлов.
    3.7.2. Коррозия трубок теплообменных аппаратов
    Коррозионное поведение медных сплавов существенно зависит от температуры и определяется наличием кислорода в воде.

    В табл. 3.1 приведены скорости перехода продуктов коррозии медно-никелевых сплавов и латуни в воду при высоком (200 мкг/дм 3) и низком
    (3 мкг/дм 3) содержании кислорода. Эта скорость приблизительно пропорциональна соответствующей скорости коррозии. Она значительно возрастает при увеличении концентрации кислорода и солесодержания воды.

    В схемах подкисления вода после декарбонизатора часто содержит до 5 мг/дм 3 углекислоты, при этом срок службы трубчатого пучка подогревателей из латуни Л-68 составляет 9–10 мес.
    Таблица 3.1

    Скорость перехода продуктов коррозии в воду с поверхности
    медно-никелевых сплавов и латуни в нейтральной среде, 10 -4 г/(м 2 ·ч)


    Материал

    Содержание О 2 , мкг/дм 3

    Температура, °С

    38

    66

    93

    121

    149

    МН 70-30
    МН 90-10
    ЛО-70-1

    3

    -

    3,8

    4,3

    3,2

    4,5

    Значительное влияние на коррозионное разрушение трубок оказывают образующиеся на поверхности твердые и мягкие отложения. Важен характер этих отложений. Если отложения способны фильтровать воду и в то же время могут задерживать на поверхности трубок медьсодержащие продукты коррозии, локальный процесс разрушения трубок усиливается. Отложения с пористой структурой (твердые отложения накипи, органические) особенно неблагоприятно сказываются на течении коррозионных процессов. С увеличением рН воды проницаемость карбонатных пленок возрастает, а с ростом ее жесткости – резко уменьшается. Этим объясняется, что в схемах с голодной регенерацией фильтров процессы коррозии протекают менее интенсивно, чем в схемах Na-катионирования. Сокращению срока службы трубок способствует также загрязнение их поверхности продуктами коррозии и другими отложениями, приводящее к образованию язв под отложениями. При своевременном удалении загрязнений можно существенно понизить локальную коррозию трубок. Ускоренный выход из строя подогревателей с латунными трубками наблюдается при повышенном солесодержании воды – более 300 мг/дм 3 , а концентрации хлоридов – более 20 мг/дм 3 .

    Средний срок эксплуатации трубок теплообменных аппаратов (3–4 года) может быть увеличен при изготовлении их из коррозионно-стойких материалов. Трубки из нержавеющей стали 1Х18Н9Т, установленные в подпиточном тракте на ряде ТЭЦ с маломинерализованной водой, эксплуатируются более 7 лет без признаков повреждений. Однако в настоящее время трудно рассчитывать на широкое применение нержавеющих сталей из-за высокой их дефицитности. Следует также иметь в виду, что эти стали подвержены питтинговой коррозии при повышенных температуре, солесодержании, концентрации хлоридов и загрязнении отложениями.

    При солесодержании подпиточной и сетевой воды выше 200 мг/дм 3 и хлор-ионов выше 10 мг/дм 3 необходимо ограничить использование латуни Л-68, особенно в подпиточном тракте до деаэратора независимо от схемы водопри-готовления. При использовании умягченной подпиточной воды, содержащей значительные количества агрессивной углекислоты (свыше 1 мг/дм 3), скорость движения потока в аппаратах с трубной системой из латуни должна превышать 1,2 м/с.

    Сплав МНЖ-5-1 следует использовать при температуре подпиточной воды теплосети выше 60 °С.
    Таблица 3.2

    Металл трубок теплообменных аппаратов в зависимости

    От схемы обработки подпиточной воды теплосети


    Схема обработки подпиточной воды

    Металл трубок теплообменников в тракте до деаэратора

    Металл трубок сетевых теплообменников

    Известкование

    Л-68, ЛА-77-2

    Л-68

    Na-катионирование

    ЛА-77-2, МНЖ-5-1

    Л-68

    Н-катионирование с голодной регенерацией фильтров

    ЛА-77-2, МНЖ-5-1

    Л-68

    Подкисление

    ЛА-77-2, МНЖ-5-1

    Л-68

    Мягкая вода без обработки

    Ж о = 0,5 ч 0,6 ммоль/дм 3 ,

    Щ о = 0,2 ч 0,5 ммоль/дм 3 ,

    РН = 6,5 ч 7,5


    ЛА-77-2, МНЖ-5-1

    Л-68

    3.7.3. Оценка коррозионного состояния действующих систем

    горячего водоснабжения и причины коррозии
    Системы горячего водоснабжения по сравнению с другими инженерными сооружениями (системами отопления, холодного водоснабжения и канализации) являются наименее надежными и долговечными. Если установленный и фактический сроки службы зданий оцениваются в 50–100 лет, а систем отопления, холодного водоснабжения и канализации в 20–25 лет, то для систем горячего водоснабжения при закрытой схеме теплоснабжения и выполнении коммуникаций из стальных труб без покрытий фактический срок службы не превышает 10 лет, а в отдельных случаях 2–3 года.

    Трубопроводы горячего водоснабжения без защитных покрытий подвержены внутренней коррозии и значительному загрязнению ее продуктами. Это приводит к снижению пропускной способности коммуникаций, росту гидравлических потерь и нарушениям в подаче горячей воды, особенно на верхние этажи зданий при недостаточных напорах городского водопровода. В крупных системах горячего водоснабжения от центральных тепловых пунктов зарастание трубопроводов продуктами коррозии нарушает регулирование разветвленных систем и ведет к перебоям в подаче горячей воды. Из-за интенсивной коррозии, особенно внешних сетей горячего водоснабжения от ЦТП, возрастают объемы текущих и капитальных ремонтов. Последние связаны с частыми перекладками внутренних (в домах) и внешних коммуникаций, нарушением благоустройства городских территорий внутри кварталов, длительным прекращением подачи горячей воды большому количеству потребителей при выходе из строя головных участков трубопроводов горячего водоснабжения.

    Коррозионные повреждения трубопроводов горячего водоснабжения от ЦТП в случае их совместной прокладки с разводящими сетями отопления приводят к затоплению последних горячей водой и их интенсивной внешней коррозии. При этом возникают большие трудности в обнаружении мест аварий, приходится выполнять большой объем земляных работ и ухудшать благоустройство жилых районов.

    При незначительных различиях в капиталовложениях на сооружение систем горячего, холодного водоснабжения и отопления эксплуатационные расходы, связанные с частой перекладкой и ремонтом коммуникаций горячего водоснабжения, несоизмеримо более высокие.

    Коррозия систем горячего водоснабжения и защита от нее приобретают особо важное значение в связи с размахом жилищного строительства в России. Тенденция укрупнения мощностей единичных установок приводит к разветвлению сети трубопроводов горячего водоснабжения, выполняемых, как правило, из обычных стальных труб без защитных покрытий. Все возрастающий дефицит воды питьевого качества обусловливает использование новых источников воды с высокой коррозионной активностью.

    Одной из основных причин, влияющих на состояние систем горячего водоснабжения, является высокая коррозионная активность нагретой водопроводной воды. Согласно исследованиям ВТИ, коррозионная активность воды независимо от источника водоснабжения (поверхностный или подземный) характеризуется тремя основными показателями: индексом равновесного насыщения воды карбонатом кальция, содержанием растворенного кислорода и суммарной концентрацией хлоридов и сульфатов. Ранее в отечественной литературе не приводилась классификация нагретой водопроводной воды по коррозионной активности в зависимости от показателей исходной воды.

    При отсутствии условий образования защитных карбонатных пленок на металле (j
    Данные наблюдений за действующими системами горячего водоснабжения указывают на значительное влияние находящихся в водопроводной воде хлоридов и сульфатов на коррозию трубопроводов. Так, воды даже с положительным индексом насыщения, но содержащие хлориды и сульфаты в концентрациях свыше 50 мг/дм 3 , являются коррозионно-активными, что обусловлено нарушением сплошности карбонатных пленок и снижением их защитного действия под влиянием хлоридов и сульфатов. При разрушении защитных пленок присутствующие в воде хлориды и сульфаты усиливают коррозию стали под действием кислорода.

    Исходя из принятой в теплоэнергетике шкалы коррозии и опытных данных ВТИ, по скорости коррозии стальных труб в нагретой питьевой воде предложена условная коррозионная классификация водопроводных вод при расчетной температуре 60 °С (табл. 3.3).

    Рис. 3.2. Зависимость глубинного показателя П коррозии стальных труб в нагретой водопроводной воде (60 °С) от расчетного индекса насыщения J:

    1, 2, 3 – поверхностный источник
    ; 4 – подземный источник
    ; 5 – поверхностный источник

    На рис. 3.2. приведены опытные данные по скорости коррозии в образцах стальных труб при различном качестве водопроводной воды. На графике прослеживается определенная закономерность снижения глубинного показателя коррозии (глубинной проницаемости) с изменением расчетного индекса насыщения воды (при содержании хлоридов и сульфатов до 50 мг/дм 3). При отрицательных значениях индекса насыщения глубинная проницаемость соответствует аварийной и сильной коррозии (точки 1 и 2); для речной воды с положительным индексом насыщения (точка 3) допустимой коррозии, а для артезианской воды (точка 4) – слабой коррозии. Обращает на себя внимание тот факт, что для артезианской и речной воды с положительным индексом насыщения и содержанием хлоридов и сульфатов менее 50 мг/дм 3 различия в глубинной проницаемости коррозии сравнительно невелики. Это значит, что в водах, склонных к образованию на стенках труб окисно-карбонатной пленки (j > 0), присутствие растворенного кислорода (высокое в поверхностной и незначительное в подземной воде) не оказывает заметного влияния на изменение глубинной проницаемости коррозии. Вместе с тем данные испытаний (точка 5) свидетельствуют о значительном росте интенсивности коррозии стали в воде с высокой концентрацией хлоридов и сульфатов (в сумме около 200 мг/дм 3), несмотря на положительный индекс насыщения (j = 0,5). Проницаемость коррозии в этом случае соответствует проницаемости в воде, имеющей индекс насыщения j = – 0,4. В соответствии с классификацией вод по коррозионной активности вода с положительным индексом насыщения и повышенным содержанием хлоридов и сульфатов относится к коррозионной.
    Таблица 3.3

    Классификация воды по коррозионной активности


    J при 60 °С

    Концентрация в холодной воде, мг/дм 3

    Коррозионная характеристика нагретой воды (при 60 °С)

    растворенного
    кислорода О 2

    хлоридов и сульфатов (в сумме)





    Любая

    Любая

    Сильнокоррозионная




    Любая

    >50

    Сильнокоррозионная



    Любая




    Коррозионная




    Любая

    >50

    Слабокоррозионная



    >5



    Слабокоррозионная







    Некоррозионная

    Разработанная ВТИ классификация (табл. 3.3) достаточно полно отражает влияние качества воды на ее коррозионные свойства, что подтверждается данными о фактическом коррозионном состоянии систем горячего водоснабжения.

    Анализ основных показателей водопроводной воды в ряде городов позволяет отнести большинство вод к типу сильнокоррозионных и коррозионных и только незначительную часть к типу слабокоррозионных и некоррозионных. Для большой доли источников характерна повышенная концентрация хлоридов и сульфатов (более 50 мг/дм 3), и есть примеры, когда эти концентрации в сумме достигают 400–450 мг/дм 3 . Столь значительное содержание хлоридов и сульфатов в водопроводных водах обусловливает их высокую коррозионную активность.

    При оценке коррозионной активности поверхностных вод необходимо учитывать непостоянство их состава в течение года. Для более надежной оценки следует пользоваться данными не единичных, а возможно большего числа анализов воды, выполненных в разные сезоны за один – два последних года.

    Для артезианских источников показатели качества воды обычно очень стабильны в течение года. Как правило, подземные воды характеризуются повышенной минерализацией, положительным индексом насыщения по карбонату кальция и высоким суммарным содержанием хлоридов и сульфатов. Последнее приводит к тому, что системы горячего водоснабжения в некоторых городах, получающие воду из артезианских скважин, также подвержены сильной коррозии.

    Когда в одном городе есть несколько источников питьевой воды, интенсивность и массовость коррозионных повреждений систем горячего водоснабжения могут быть различными. Так, в Киеве имеются три источника водоснабжения:
    р. Днепр, р. Десна и артезианские скважины. Наиболее сильной коррозии подвержены системы горячего водоснабжения в районах города, снабжаемых коррозионной днепровской водой, в меньшей степени – системы, эксплуатируемые на слабокоррозионной деснянской воде, и в еще меньшей степени – на артезианской воде. Наличие районов в городе с разной коррозионной характеристикой водопроводной воды сильно затрудняет организацию противокоррозионных мероприятий как на стадии проектирования, так и в условиях эксплуатации систем горячего водоснабжения.

    Для оценки коррозионного состояния систем горячего водоснабжения были проведены их обследования в ряде городов. Экспериментальные исследования скорости коррозии труб с помощью трубчатых и пластинчатых образцов были выполнены в районах нового жилищного строительства городов Москвы, Санкт-Петербурга и др. Результаты обследования показали, что состояние трубопроводов находится в прямой зависимости от коррозионной активности водопроводной воды.

    Существенное влияние на размеры коррозионных повреждений в системе горячего водоснабжения оказывает высокая централизация установок по нагреву воды на центральных тепловых пунктах или теплораспределительных станциях (ТРС). Первоначально широкое строительство ЦТП в России было обусловлено рядом причин: отсутствием в новых жилых домах подвальных помещений, пригодных для размещения оборудования горячего водоснабжения; недопустимостью установки обычных (не бесшумных) циркуляционных насосов в индивидуальных тепловых пунктах; ожидаемым сокращением обслуживающего персонала в результате замены сравнительно мелких подогревателей, устанавливаемых в индивидуальных тепловых пунктах, крупными; необходимостью повышения уровня эксплуатации ЦТП путем их автоматизации и улучшения обслуживания; возможностью сооружения крупных установок по противокоррозионной обработке воды для систем горячего водоснабжения.

    Однако как показал опыт эксплуатации ЦТП и систем горячего водоснабжения от них, количество обслуживающего персонала не сократилось из-за необходимости выполнять большой объем работ при текущем и капитальном ремонтах систем горячего водоснабжения. Централизованная противокоррозионная обработка воды на ЦТП не получила широкого распространения из-за сложности установок, высоких начальных и эксплуатационных затрат и отсутствия стандартного оборудования (вакуумная деаэрация).

    В условиях, когда для систем горячего водоснабжения применяются преимущественно стальные трубы без защитных покрытий, при высокой коррозионной активности водопроводных вод и отсутствии на ЦТП противокоррозионной обработки воды дальнейшее строительство только ЦТП, по-видимому, нецелесообразно. Строительство в последние годы домов новых серий с подвальными помещениями и производство бесшумных центробежных насосов будут способствовать переходу во многих случаях к проектированию индивидуальных тепловых пунктов (ИТП) и повышению надежности горячего водоснабжения.

    3.8. Консервация теплоэнергетического оборудования

    и теплосетей

    3.8.1. Общее положение

    Консервация оборудования – это защита от так называемой стояночной коррозии.

    Консервация котлов и турбоустановок для предотвращения коррозии металла внутренних поверхностей осуществляется при режимных остановках и выводе в резерв на определенный и неопределенный сроки: вывод – в текущий, средний, капитальный ремонт; аварийные остановы, в продолжительный резерв или ремонт, на реконструкцию на срок выше 6 месяцев.

    На основе производственной инструкции на каждой электростанции, котельной должно быть разработано и утверждено техническое решение по организации консервации конкретного оборудования, определяюще способы консервации при различных видах остановов и продолжительности простоя технологической схемы и вспомогательного оборудования.

    При разработке технологической схемы консервации целесообразно максимально использовать штатные установки коррекционной обработки питательной и котловой воды, установки химической очистки оборудования, баковое хозяйство электростанции.

    Технологическая схема консервации должна быть по возможности стационарной, надежно отключаться от работающих участков тепловой схемы.

    Необходимо предусматривать нейтрализацию или обезвреживание сбросных вод а, также возможность повторного использования консервирующих растворов.

    B соответствии с принятым техническим решением составляется и утверждается инструкция по консервации оборудования с указаниями по подготовительным операциям, технологии консервации и расконсервации, а также по мерам безопасности при проведении консервации.

    При подготовке и проведении работ по консервации и расконсервации необходимо соблюдать требования Правил техники безопасности при эксплуатации тепломеханического оборудования электростанций и тепловых сетей. Также при необходимости должны быть приняты дополнительные меры безопасности, связанные со свойствами используемых химических реагентов.

    Нейтрализация и очистка отработанных консервирующих растворов химических реагентов должна осуществляться в соответствии с директивными документами.
    3.8.2. Способы консервации барабанных котлов
    1. «Сухой» останов котла.

    Сухой останов применяется для котлов любых давлений при отсутствии в них вальцовочных соединений труб с барабаном.

    Сухой останов проводится при плановом останове в резерв или ремонт на срок до 30 суток, а также при аварийном останове.

    Методика сухого останова заключается в следующем.

    После останова котла в процессе его естественного остывания или расхолаживания дренирование начинается при давлении 0,8 – 1,0 МПа. Промежуточный пароперегреватель обеспаривают на конденсатор. После дренирования закрывают все вентили и задвижки пароводяной схемы котла.

    Дренирование котла при давлении 0,8 – 1,0 МПа позволяет после его опорожнения сохранить температуру металла в котле выше температуры насыщения при атмосферном давлении за счет тепла, аккумулированного металлом, обмуровкой и изоляцией. При этом происходит подсушка внутренних поверх­ностей барабана, коллекторов и труб.

    2. Поддержание в котле избыточного давления.

    Поддержание в котле давления выше атмосферного предотвращает доступ в него кислорода, воздуха. Избыточное давление поддерживается при протоке через котел деаэрированной воды. Консервация при поддержании избыточного давления применяется для котлов любых типов и давлений. Этот способ осуществляется при выводе котла в резерв или ремонт, не связанный с работами на поверхностях нагрева, на срок до 10 суток. На котлах с вальцовочными соединениями труб с барабаном допускается применение избыточного давления на срок до 30 суток.

    3. Кроме указанных способов консервации на барабанных котлах применяются:

    Гидразинная обработка поверхностей нагрева при рабочих параметрах котла;

    Гидразинная обработка при пониженных параметрах пара;

    Гидразинная «выварка» поверхностей нагрева котла;

    Трилонная обработка поверхностей нагрева котла;

    Фосфатно-аммиачная «выварка»;

    Заполнение поверхностей нагрева котла защитными щелочными раство­рами;

    Заполнение поверхностей нагрева котла азотом;

    Консервация котла контактным ингибитором.

    3.8.3. Способы консервации прямоточных котлов
    1. «Сухой» останов котла.

    Сухой останов применяется на всех прямоточных котлах независимо от принятого водно-химического режима. Он проводится при любых плановых и аварийных остановах на срок до 30 суток. Пар из котла частично выпускают в конденсатор так, чтобы в течение 20–30 мин давление в котле снизилось до
    30–40 кгс/см 2 (3–4 МПа). Открывают дренажи входных коллекторов и водяного экономайзера. При снижении давления до нуля котел обеспаривают на конденсатор. Вакуум поддерживают не менее 15 мин.

    2. Гидразинная и кислородная обработка поверхностей нагрева при рабочих параметрах котла.

    Гидразинная и кислородная обработка проводится в сочетании с сухим остановом. Методика проведения гидразинной обработки прямоточного котла такая же, как и барабанного.

    3. Заполнение поверхностей нагрева котла азотом.

    Заполнение котла азотом осуществляется при избыточном давлении в поверхностях нагрева. Консервация азотом применяется на котлах любых давлений на электростанциях, имеющих азот от собственных установок!

    4. Консервация котла контактным ингибитором.

    Консервация котла контактным ингибитором применяется для любых типов котлов независимо от применяемого водно-химического режима и проводится при выводе котла в резерв или ремонт на срок от 1 месяца до 2 лет.
    3.8.4. Способы консервации водогрейных котлов
    1. Консервация раствором гидроксида кальция.

    Защитная пленка сохраняется в течение 2–3 месяцев после опорожнения котла от раствора после 3–4 или более недель контакта. Гидроксид кальция применяется для консервации водогрейных котлов любых типов на электростанциях, котельных, имеющих водоподготовительные установки с известковым хозяйством. Способ основан на высокоэффективных ингибирующих способностях раствора гидроксида кальция Са(ОН) 2 . Защитной концентрацией гидроксида кальция является 0,7 г/дм 3 и выше. При контакте с металлом его устойчивая защитная пленка формируется в течение 3–4 недель.

    2. Консервация раствором силиката натрия.

    Силикат натрия применяется для консервации водогрейных котлов любых видов при выводе котла в резерв на срок до 6 месяцев или выводе котла в ремонт на срок до 2 месяцев.

    Силикат натрия (жидкое натриевое стекло) образует на поверхности металла прочную защитную пленку в виде соединения Fe 3 O 4 ·FeSiO 3 . Эта пленка экранирует металл от воздействия коррозионных агентов (СО 2 и О 2). При осуществлении данного способа водогрейный котел полностью заполняется раствором силиката натрия с концентрацией SiO 2 в консервирующем растворе не менее 1,5 г/дм 3 .

    Формирование защитной пленки происходит при выдержке консервирующего раствора в котле в течение нескольких суток или циркуляции раствора через котел в течение нескольких часов.
    3.8.5. Способы консервации турбоустановок
    Консервация подогретым воздухом. Продувка турбоустановки горячим воздухом предотвращает попадание во внутренние полости влажного воздуха и протекание коррозионных процессов. Особенно опасно попадание влаги на поверхности проточной части турбины при наличии на них отложений соединений натрия. Консервация турбоустановки подогретым воздухом проводится при выводе в резерв на срок 7 суток и более.

    Консервация азотом. При заполнении внутренних полостей турбоустановки азотом и поддержании в дальнейшем небольшого его избыточного давления предотвращается попадание влажного воздуха. Подачу азота в турбину начинают после останова турбины и окончания вакуумной сушки промежуточного пароперегревателя. Консервацию азотом можно применять и для паровых пространств бойлеров и подогревателей.

    Консервация коррозии летучими ингибиторами. Летучие ингибиторы коррозии типа ИФХАН защищают стали, медь, латунь, адсорбируясь на поверхности металла. Этот адсорбционный слой значительно снижает скорость электрохимических реакций, обусловливающих коррозионный процесс.

    Для консервации турбоустановки осуществляется просасывание через турбину воздуха, насыщенного ингибитором. Насыщение воздуха ингибитором происходит при контакте его с силикагелем, пропитанным ингибитором, так называемым линасилем. Пропитка линасиля осуществляется на заводе-изготовителе. Для поглощения избытка ингибитора на выходе из турбоустановки воздух проходит через чистый силикагель. Для консервации 1 м 3 объема требуется не менее 300 г линасиля, защитная концентрация ингибитора в воздухе составляет 0,015 г/дм 3 .
    3.8.6. Консервация тепловых сетей
    При силикатной обработке подпиточной воды образуется защитная пленка от воздействия СО 2 и О 2 . При этом с непосредственным разбором горячей воды содержание силиката в подпиточной воде должно быть не более 50 мг/дм 3 в пересчете на SiO 2 .

    При силикатной обработке подпиточной воды предельная концентрация кальция должна определяться с учетом суммарной концентрации не только сульфатов (для предотвращения выпадения CaSO 4), но и кремниевой кислоты (для предотвращения выпадения CaSiО 3) для заданной температуры нагрева сетевой воды с учетом труб котла 40 °C (ПТЭ 4.8.39).

    При закрытой системе теплоснабжения рабочая концентрация SiО 2 в консервирующем растворе может быть 1,5 – 2 г/дм 3 .

    Если не производить консервацию раствором силиката натрия, то тепловые сети в летний период должны быть всегда заполнены сетевой водой, отвечающей требованиям ПТЭ 4.8.40.

    3.8.7. Краткие характеристики применяемых химических реагентов
    для консервации и меры предосторожности при работе с ними

    Водный раствор гидразингидрата N 2 Н 4 ·Н 2 О

    Раствор гидразингидрата – бесцветная жидкость, легко поглощающая из воздуха воду, углекислоту и кислород. Гидразингидрат является сильным восстановителем. Токсичность (класс опасности) гидразина – 1.

    Водные растворы гидразина концентрацией до 30% не огнеопасны – перевозить и хранить их можно в сосудах из углеродистой стали.

    При работе с растворами гидразингидрата необходимо исключить попадание в них пористых веществ, органических соединений.

    К местам приготовления и хранения растворов гидразина должны быть подведены шланги для смыва водой пролитого раствора с оборудования. Для нейтрализации и обезвреживания должна быть приготовлена хлорная известь.

    Попавший на пол раствор гидразина следует засыпать хлорной известью и смыть большим количеством воды.

    Водные растворы гидразина могут вызывать дерматит кожи и раздражать дыхательные пути и глаза. Соединения гидразина попадая в организм, вызывают изменения в печени и крови.

    При работе с растворами гидразина необходимо пользоваться личными очками, резиновыми перчатками, резиновым передником, противогазом марки КД.

    Попавшие на кожу и в глаза капли раствора гидразина необходимо смыть большим количеством воды.
    Водный раствор аммиака NH 4 (OH )

    Водный раствор аммиака (аммиачная вода) – бесцветная жидкость с резким специфическим запахом. При комнатной температуре и особенно при нагревании обильно выделяет аммиак. Токсичность (класс опасности) аммиака – 4. Предельно допустимая концентрация аммиака в воздухе – 0,02 мг/дм 3 . Раствор аммиака обладает щелочной реакцией. При работе с аммиаком необходимо выполнять следующие требования техники безопасности:

    – раствор аммиака должен храниться в баке с герметичной крышкой;

    – пролитый раствор аммиака должен смываться большим количеством воды;

    – при необходимости ремонта оборудования, используемого для приготовления и дозирования аммиака, его следует тщательно промыть водой;

    – водный раствор и пары аммиака вызывают раздражение глаз, дыхательных путей, тошноту и головную боль. Особенно опасно попадание аммиака в глаза;

    – при работе с раствором аммиака необходимо использовать защитные очки;

    – попавший на кожу и в глаза аммиак необходимо смыть большим количеством воды.

    Трилон Б
    Товарный трилон Б – порошкообразное вещество белого цвета.

    Раствор трилона стоек, не разлагается при длительном кипячении. Растворимость трилона Б при температуре 20–40 °С составляет 108–137 г/дм 3 . Значение рН этих растворов около 5,5.

    Товарный трилон Б поставляется в бумажных мешках с полиэтиленовым вкладышем. Храниться реагент должен в закрытом сухом помещении.

    Заметного физиологического воздействия на организм человека трилон Б не оказывает.

    При работе с товарным трилоном необходимо применять респиратор, рукавицы и защитные очки.
    Тринатрийфосфат Na 3 PO 4 ·12Н 2 О
    Тринатрийфосфат – белое кристаллическое вещество, хорошо растворимое в воде.

    В кристаллическом виде специфического действия на организм не оказывает.

    В пылевидном состоянии, попадая в дыхательные пути или глаза раздражает слизистые оболочки.

    Горячие растворы фосфата опасны при попадании брызг в глаза.

    При проведении работ, сопровождающихся пылением, необходимо использовать респиратор и защитные очки. При работе с горячим раствором фосфата применять защитные очки.

    При попадании на кожу или в глаза надо смыть большим количеством воды.
    Едкий натр NaOH
    Едкий натр – белое, твердое, очень гигроскопичное вещество, хорошо растворимое в воде (при температуре 20 °С растворимость составляет 1070 г/дм 3).

    Раствор едкого натра – бесцветная жидкость тяжелее воды. Температура замерзания 6-процентного раствора минус 5 °С, 41,8-процентного – 0 °С.

    Едкий натр в твердом кристаллическом виде перевозится и хранится в стальных барабанах, а жидкая щелочь – в стальных емкостях.

    Попавший на пол едкий натр (кристаллический или жидкий) следует смыть водой.

    При необходимости ремонта оборудования, используемого для приготовления и дозирования щелочи, его следует промыть водой.

    Твердый едкий натр и его растворы вызывают сильные ожоги, особенно при попадании в глаза.

    При работе с едким натром необходимо предусмотреть аптечку, содержащую вату, 3-процентный раствор уксусной кислоты и 2-процентный раствор борной кислоты.

    Индивидуальные средства защиты при работе с едким натром – хлопчатобумажный костюм, защитные очки, прорезиненный фартук, резиновые сапоги, резиновые перчатки.

    При попадании щелочи на кожу ее необходимо удалить ватой, промыть пораженное место уксусной кислотой. При попадании щелочи в глаза необходимо промыть их струей воды, а затем раствором борной кислоты и обратиться в медпункт.
    Силикат натрия (жидкое стекло натриевое)
    Товарное жидкое стекло представляет собой густой раствор желтого или серого цвета, содержание SiO 2 в нем 31 – 33 %.

    Силикат натрия поступает в стальных бочках или цистернах. Жидкое стекло следует хранить в сухих закрытых помещениях при температуре не ниже плюс 5 °С.

    Силикат натрия – щелочной продукт, хорошо растворяется в воде при температуре 20 - 40 °С.

    При попадании на кожу раствора жидкого стекла его следует смыть водой.
    Гидроксид кальция (известковый раствор) Са(ОН) 2
    Известковый раствор – прозрачная жидкость без цвета и запаха, нетоксична и обладает слабой щелочной реакцией.

    Раствор гидроксида кальция получается при отстаивании известкового молока. Растворимость гидроксида кальция мала – не более 1,4 г/дм 3 при 25 °С.

    При работе с известковым раствором людям с чувствительной кожей рекомендуется работать в резиновых перчатках.

    При попадании раствора на кожу или в глаза необходимо смыть его водой.
    Контактный ингибитор
    Ингибитор М-1 является солью циклогексиламина (ТУ 113-03-13-10-86) и синтетических жирных кислот фракции С 10-13 (ГОСТ 23279-78). В товарном виде представляет собой пастообразное или твердое вещество от темно-желтого до коричневого цвета. Температура плавления ингибитора выше 30 °С, массовая доля циклогексиламина 31–34 %, pH спиртоводного раствора с массовой долей основного вещества 1 % равен 7,5–8,5; плотность водного раствора 3-процентного при температуре 20 °С составляет 0,995 – 0,996 г/дм 3 .

    Ингибитор М-1 поставляется в стальных барабанах, металлических флягах, стальных бочках. На каждом грузовом месте должна быть маркировка со следующими данными: наименование предприятия-изготовителя, наименование ингибитора, номер партии, дата изготовления, масса нетто, брутто.

    Товарный ингибитор относится к горючим веществам и должен храниться на складе в соответствии с правилами хранения горючих веществ. Водный раствор ингибитора не огнеопасен.

    Попавший на пол раствор ингибитора необходимо смыть большим количеством воды.

    При необходимости ремонта оборудования, используемого для хранения и приготовления раствора ингибитора, его следует тщательно промыть водой.

    Ингибитор М-1 относится к третьему классу (вещества умеренно опасные). ПДК в воздухе рабочей зоны для ингибитора не должна превышать 10 мг/дм 3 .

    Ингибитор химически устойчив, не образует токсичных соединений в воздухе и сточных водах в присутствии других веществ или факторов производственной сферы.

    Лица, занятые на работах с ингибитором, должны иметь хлопчатобумажный костюм или халат, рукавицы, головной убор.

    По окончании работ с ингибитором необходимо вымыть руки теплой водой с мылом.
    Летучие ингибиторы
    Летучий ингибитор атмосферной коррозии ИФХАН-1 (1-диэтиламино-2 метилбутанон-3) представляет собой прозрачную жидкость желтоватого цвета с резким специфическим запахом.

    Жидкий ингибитор ИФХАН-1 по степени воздействия относится к высокоопасным веществам. ПДК паров ингибитора в воздухе рабочей зоны не должна превышать 0,1 мг/дм 3 . Ингибитор ИФХАН-1 в высоких дозах вызывает возбуждение центральной нервной системы, раздражающее действие на слизистые оболочки глаз, верхних дыхательных путей. Длительное воздействие ингибитора на незащищенную кожу может вызвать дерматит.

    Ингибитор ИФХАН-1 химически устойчив и не образует токсичных соединений в воздухе и сточных водах в присутствии других веществ.

    Жидкий ингибитор ИФХАН-1 относится к легковоспламеняющимся жидкостям. Температура воспламенения жидкого ингибитора 47 °С, температура самовоспламенения 315 °С. При загорании применяются следующие средства пожаротушения: кошма, пенные огнетушители, огнетушители ОУ.

    Уборка помещений должна проводиться влажным способом.

    При работе с ингибитором ИФХАН-1 необходимо применять средства индивидуальной защиты – костюм из хлопчатобумажной ткани (халат), резиновые перчатки.

    Ингибитор ИФХАН-100 , также являющийся производным аминов, менее токсичен. Относительно безопасный уровень воздействия – 10 мг/дм 3 ; температура воспламенения 114 °С, самовоспламенения 241 °С.

    Меры безопасности при работе с ингибитором ИФХАН-100 те же, что и при работе с ингибитором ИФХАН-1.

    Запрещается проведение работ внутри оборудования до его расконсервации.

    При высоких концентрациях ингибитора в воздухе или при необходимости работы внутри оборудования после его расконсервации следует применять противогаз марки А с коробкой фильтрующей марки А (ГОСТ 12.4.121-83 и
    ГОСТ 12.4.122-83). Предварительно оборудование следует провентилировать. Работы внутри оборудования после расконсервации следует проводить бригадой из двух человек.

    После окончания работы с ингибитором необходимо вымыть руки с мылом.

    В случае попадания жидкого ингибитора на кожу надо смыть его водой с мылом, при попадании в глаза - промыть их обильной струей воды.
    Контрольные вопросы


    1. Виды коррозионных процессов.

    2. Охарактеризуйте химическую и электрохимическую коррозию.

    3. Влияние внешних и внутренних факторов на коррозию металла.

    4. Коррозия конденсатно-питательного тракта котлоагрегатов и тепловых сетей.

    5. Коррозия паровых турбин.

    6. Коррозия оборудования подпиточного и сетевого трактов теплосети.

    7. Основные способы обработки воды для снижения интенсивности коррозии теплосети.

    8. Цель консервации теплоэнергетического оборудования.

    9. Перечислите способы консервации:
    а) паровых котлов;

    Б) водогрейных котлов;

    В) турбоустановок;

    Г) тепловых сетей.

    10. Дайте краткую характеристику применяемых химических реагентов.

    В судовых паровых котлах коррозия может протекать как со стороны пароводяного контура, так и со стороны продуктов сгорания топлива.

    Внутренние поверхности пароводяного контура могут подвергаться следующим видам коррозии;

    Кислородная коррозия - является наиболее опасным видом коррозии. Характерной особенностью кислородной коррозии является образование местных точечных очагов коррозии, доходящих до глубоких язвин и сквозных дыр; Наиболее подвержены кислородной коррозии входные участки экономайзеров, коллекторы и опускные трубы циркуляционных контуров.

    Нитритная коррозия - в отличие от кислородной поражает внутренние поверхности теплонапряженных подъемных трубок и вызывает образование более глубоких язвин диаметром 15 ^ 20 мм.

    Межкристаллитная коррозия является особым видом коррозии и возникает в местах наибольших напряжений металла (сварные швы, вальцовочные и фланцевые соединения) в результате взаимодействия котельного металла с высококонцентрированной щелочью. Характерной особенностью является появление на поверхности металла сетки из мелких трещин, постепенно развивающихся в сквозные трещины;

    Подшламоеая коррозия возникает в местах отложения шлама и в застойных зонах циркуляционных контуров котлов. Процесс протекания носит электрохимический характер при контакте окислов железа с металлом.

    Со стороны продуктов сгорания топлива могут наблюдаться следующие виды коррозии;

    Газовая коррозия поражает испарительные, перегревательные и экономайзерные поверхности нагрева, обшивку кожуха,

    Газонаправляющие щиты и другие элементы котла, подвергающиеся воздействию высоких температур газов.. При повышении температуры металла котельных труб свыше 530 0С (для углеродистой стали) начинается разрушение защитной оксидной пленки на поверхности труб, обеспечивая беспрепятственный доступ кислорода к чистому металлу. При этом на поверхности труб происходит коррозия с образованием окалины.

    Непосредственной причиной этого вида коррозии является нарушение режима охлаждения указанных элементов и повышение их температуры выше допустимой. Для труб поверхностей нагрева причинами повЫш Ения температуры стенок могут быть; образование значительного слоя накипи, нарушения режима циркуляции (застой, опрокидывание, образование паровых пробок), упуск воды из котла, неравномерность раздачи воды и отбора пара по длине парового коллектора.

    Высокотемпературная (ванадиевая) коррозия поражает поверхности нагрева пароперегревателей, расположенные в зоне высоких температур газов. При сжигании топлива происходит образование окислов ванадия. При этом при недостатке кислорода образуется трехокись ванадия, а при его избытке - пятиокись ванадия. Коррозионно-опасной является пятиокись ванадия У205, имеющая температуру плавления 675 0С. Пятиокись ванадия, выделяющаяся при сжигании мазутов, налипает на поверхности нагрева, имеющие высокую температуру, и вызывает активное разрушение металла. Опыты показали, что даже такие содержания ванадия, как 0,005 % по весовому составу могут вызвать опасную коррозию.

    Ванадиевую коррозию можно предотвратить снижением допустимой температуры металла элементов котла и организацией горения с минимальными коэффициентами избытка воздуха а = 1,03 + 1,04.

    Низкотемпературная (кислотная) коррозия поражает в основном хвостовые поверхности нагрева. В продуктах сгорания сернистых мазутов всегда присутствуют пары воды и соединения серы, образующие при соединении друг с другом серную кислоту. При омывании газами относительно холодных хвостовых поверхностей нагрева пары серной кислоты конденсируется на них и вызывают коррозию металла. Интенсивность низкотемпературной коррозии зависит от концентрации серной кислоты в пленке влаги, оседающей на поверхностях нагрева. При этом концентрация Б03 в продуктах сгорания определяется не только содержанием серы в топливе. Основными факторами, влияющими на скорость протекания низкотемпературной коррозии, являются;

    Условия протекания реакции горения в топке. При повышении коэффициента избытка воздуха увеличивается процентное содержание газа Б03 (при а = 1,15 окисляется 3,6 % серы, содержащейся в топливе; при а = 1,7 окисляется около 7 % серы). При коэффициентах избытка воздуха а = 1,03 - 1,04 серного ангидрида Б03 практически не образуется;

    Состояние поверхностей нагрева;

    Питание котла слишком холодной водой, вызывающей понижение температуры стенок труб экономайзера ниже тоски росы для серной кислоты;

    Концентрация воды в топливе; при сжигании обводненных топлив точка росы повышается вследствие повышения парциального давления водяных паров в продуктах сгорания.

    Стояночная коррозия поражает внешние поверхности труб и коллекторов, обшивку, топочные устройства, арматуру и другие элементы газовоздушного тракта котла. Сажа, образующаяся при сжигании топлива, покрывает поверхности нагрева и внутренние части газовоздушного тракта котла. Сажа гигроскопична, и при остывании котла легко впитывает влагу, вызывающую коррозию. Коррозия носит язвенный характер при образовании на поверхности металла пленки раствора серной кислоты при остывании котла и снижении температуры его элементов ниже точки росы для серной кислоты.

    Борьба со стояночной коррозией основана на создании условий, исключающих попадание влаги на поверхности котельного металла, а также нанесением антикоррозионных покрытий на поверхности элементов котлов.

    При кратковременном бездействии котлов после осмотра и чистки поверхностей нагрева с целью предотвращения попадания атмосферных осадков в газоходы котлов на дымовую трубу необходимо одевать чехол, закрывать воздушные регистры, смотровые отверстия. Необходимо постоянно контролировать влажность и температуру в МКО.

    Для предотвращения коррозии котлов во время бездействия используются различные способы хранения котлов. Различают два способа хранения; мокрое и сухое.

    Основным способом хранения котлов является мокрое хранение. Оно предусматривает полное заполнение котла питательной водой, пропущенной через электроно-ионообменные и обескислораживающие фильтры, включая пароперегреватель и экономайзер. Держать котлы на мокром хранении можно не более 30 суток. В случае более длительного бездействия котлов применяется сухое хранение котла.

    Сухое хранение предусматривает полное осушение котла от воды с размещением в коллекторах котла бязевых мешочков с селикагелем, поглощающим влагу. Периодически производится вскрытие коллекторов, контрольный замер массы селикагеля с целью определения массы поглощенной влаги, и выпаривание поглощенной влаги из селикагеля.

    Что такое Гидро-Икс:

    Гидро-Икс (Hydro-X) называют изобретен­ный в Дании 70 лет назад метод и раствор, обес­печивающие необходимую коррекционную обра­ботку воды для систем отопления и котлов как водогрейных, так и паровых с низким давлением пара (до 40 атм). При использовании метода Гид­ро-Икс в циркулирующую воду добавляется толь­ко один раствор, поставляемый к потребителю в пластиковых канистрах или бочках в уже готовом для использования виде. Это позволяет не иметь на предприятиях специальных складов для хими­ческих реагентов, цеха для приготовления необ­ходимых растворов и т. п.

    Использование Гидро-Икс обеспечивает поддержание необходимой величины рН, очистку воды от кислорода и свободной углекислоты, пре­дотвращение появления накипи, а при ее наличии отмывку поверхностей, а также предохранение от коррозии.

    Гидро-Икс представляет собой прозрачную желтовато-коричневую жидкость, однородную, сильно щелочную, с удельным весом около 1,19 г/см при 20 °С. Ее состав стабилен и даже при длительном хранении не имеет место разделение жидкости или выпадение осадка, так что нет нуж­ды в перемешивании перед употреблением. Жид­кость не огнеопасна.

    Достоинства метода Гидро-Икс – про­стота и эффективность водоподготовки.

    При работе водонагревательных систем, включающих теплообменники, водогрейные или паровые котлы, как правило, производится их подпитка добавочной водой. Для предотвращения появления накипи необходимо осуществлять водоподготовку с целью уменьшения содержания шлама и солей в котловой воде. Водоподготовка может быть осуществлена, например, за счет ис­пользования умягчающих фильтров, применения обессоливания, обратного осмоса и др. Даже по­сле такой обработки остаются проблемы, связан­ные с возможным протеканием коррозии. При до­бавке в воду каустической соды, тринатрийфосфата и т. п., также остается проблема коррозии, а для паровых котлов и загрязнение пара.

    Достаточно простым методом, предотвра­щающим появление накипи и коррозию, является метод Гидро-Икс, согласно которому добавляется в котловую воду небольшое количество уже при­готовленного раствора, содержащего 8 органиче­ских и неорганических компонентов. Достоинства метода заключаются в следующем:

    – раствор поступает к потребителю в уже готовом для использования виде;

    – раствор в небольших количествах вводит­ся в воду либо вручную, либо с помощью насоса-дозатора;

    – при использовании Гидро-Икс нет необхо­димости применять другие химические вещества;

    – в котловую воду подается примерно в 10 раз меньше активных веществ, чем при примене­нии традиционных методов обработки воды;

    Гидро-Икс не содержит токсичных компо­нентов. Кроме гидроксида натрия NaOH и тринатрийфосфата Na3PO4 все остальные вещества из­влечены из нетоксичных растений;

    – при использовании в паровых котлах и ис­парителях обеспечивается чистый пар и предот­вращается возможность вспенивания.

    Состав Гидро-Икс.

    Раствор включает восемь различных веществ как органических, так и неорганических. Механизм действия Гидро-Икс носит комплексный физико-химический характер.

    Направление воздействия каждой состав­ляющей примерно следующее.

    Гидроксид натрия NaOH в количестве 225 г/л уменьшает жесткость воды и регулирует зна­чение рН, предохраняет слой магнетита; тринатрийфосфат Na3PO4 в количестве 2,25 г/л – пре­дотвращает образование накипи и защищает по­верхность из железа. Все шесть органических соеди­нений в сумме не превышают 50 г/л и включают лигнин, танин, крахмал, гликоль, альгинат и маннуронат натрия. Общее количество базовых ве­ществ NaOH и Na3PO4 при обработке воды Гидро-Икс очень мало, примерно в десять раз меньше, чем используют при традиционной обработке, согласно принципу стехиометрии.

    Влияние компонентов Гидро-Икс скорее физическое, чем химическое.

    Органические добавки служат следующим целям.

    Альгинат и маннуронат натрия используют­ся вместе с некоторыми катализаторами и спо­собствуют осаждению солей кальция и магния. Танины поглощают кислород и создают защитный от коррозии слой железа. Лигнин действует по­добно танину, а также способствует удалению имеющейся накипи. Крахмал формирует шлам, а гликоль препятствует вспениванию и уносу капель влаги. Неорганические соединения поддерживают необходимую для эффективного действия орга­нических веществ слабо щелочную среду, служат индикатором концентрации Гидро-Икс.

    Принцип действия Гидро-Икс.

    Решающую роль в действии Гидро-Икс ока­зывают органические составляющие. Хотя они присутствуют в минимальных количествах, за счет глубокого диспергирования их активная реакцион­ная поверхность достаточно велика. Молекуляр­ный вес органических составляющих Гидро-Икс значителен, что обеспечивает физический эф­фект притягивания молекул загрязнителей воды. Этот этап водоподготовки протекает без химиче­ских реакций. Поглощение молекул загрязнителей нейтрально. Это позволяет собрать все такие мо­лекулы, как создающие жесткость, так и соли же­леза, хлориды, соли кремниевой кислоты и др. Все загрязнители воды осаждаются в шламе, ко­торый подвижен, аморфен и не слипается. Это предотвращает возможность образования накипи на поверхностях нагрева, что является сущест­венным достоинством метода Гидро-Икс.

    Нейтральные молекулы Гидро-Икс погло­щают как положительные, так и отрицательные ионы (анионы и катионы), которые в свою очередь взаимно нейтрализуются. Нейтрализация ионов непосредственно влияет на уменьшение электро­химической коррозии, поскольку этот вид коррозии связан с различным электрическим потенциалом.

    Гидро-Икс эффективен против коррозионно опасных газов – кислорода и свободной углекислоты. Концентрация Гидро-Икс в 10 ррт вполне достаточна, чтобы предотвратить этот вид корро­зии независимо от температуры среды.

    Каустическая сода может привести к появ­лению каустической хрупкости. Применение Гид­ро-Икс уменьшает количество свободных гидроксидов, значительно снижая риск каустической хрупкости стали.

    Без остановки системы для промывки процесс Гидро-Икс позволяет удалить старые су­ществующие накипи. Это происходит благодаря наличию молекул лигнина. Эти молекулы прони­кают в поры котловой накипи и разрушают ее. Хо­тя все же следует отметить, что, если котел силь­но загрязнен, экономически целесообразнее про­вести химическую промывку, а затем уже для предотвращения накипи использовать Гидро-Икс, что уменьшит его расход.

    Образовавшийся шлам собирается в шламонакопителях и удаляется из них путем перио­дических продувок. В качестве шламонакопителей могут использоваться фильтры (грязевики), через которые пропускается часть возвращаемой в ко­тел воды.

    Важно, чтобы образовавшийся под дейст­вием Гидро-Икс шлам по возможности удалялся ежедневными продувками котла. Величина про­дувки зависит от жесткости воды и типа предпри­ятия. В начальный период, когда происходит очи­стка поверхностей от уже имеющегося шлама и в воде находится значительное содержание загряз­няющих веществ, продувка должна быть больше. Продувка проводится полным открытием проду­вочного клапана на 15-20 секунд ежедневно, а при большой подпитке сырой воды 3-4 раза в день.

    Гидро-Икс может применяться в отопитель­ных системах, в системах централизованного теп­лоснабжения, для паровых котлов невысокого давления (до 3,9 МПа). Одновременно с Гидро-Икс никакие другие реагенты не должны быть ис­пользованы, кроме сульфита натрия и соды. Само собой разумеется, что реагенты для добавочной воды не относятся к этой категории.

    В первые несколько месяцев эксплуатации расход реагента следует несколько увеличить, с целью устранения существующей в системе наки­пи. Если есть опасение, что пароперегреватель котла загрязнен отложениями солей, его следует очистить другими методами.

    При наличии внешней системы водоподготовки необходимо выбрать оптимальный режим эксплуатации Гидро-Икс, что позволит обеспе­чить общую экономию.

    Передозировка Гидро-Икс не сказывается отрицательно ни на надежности работы котла, ни на качестве пара для паровых котлов и влечет лишь увеличение расхода самого реагента.

    Паровые котлы

    В качестве добавочной воды используется сырая вода.

    Постоянная дозировка: 0,2 л Гидро-Икс на каждый метр кубический добавочной воды и 0,04 л Гидро-Икс на каждый метр кубический конденсата.

    В качестве добавочной воды умягченная вода.

    Начальная дозировка: 1 л Гидро-Икс на каждый метр кубический воды в котле.

    Постоянная дозировка: 0,04 л Гидро-Икс на каждый метр кубический добавочной воды и конденсата.

    Дозировка для очистки котла от накипи: Гидро-Икс дозируется в количестве на 50 % больше посто­янной дозы.

    Системы теплоснабжения

    В качестве подпиточной воды – сырая вода.

    Начальная дозировка: 1 л Гидро-Икс на каждый метр кубический воды.

    Постоянная дозировка: 1 л Гидро-Икс на каждый метр кубический подпиточной воды.

    В качестве подпиточной воды – умягченная вода.

    Начальная дозировка: 0,5 л Гидро-Икс на каждый метр кубический воды.

    Постоянная дозировка: 0,5 л Гидро-Икс на каждый метр кубический подпиточной воды.

    На практике дополнительная дозировка основыва­ется на результатах анализов величины рН и жесткости.

    Измерение и контроль

    Нормальная дозировка Гидро-Икс состав­ляет в сутки примерно 200-400 мл на тонну доба­вочной воды при средней жесткости 350 мкгэкв/дм3 в расчете на СаСО3, плюс 40 мл на тонну обратной воды. Это, разумеется, ориентировочные цифры, а более точно дозирование может быть установ­лено контролем за качеством воды. Как уже отме­чалось, передозировка не нанесет никакого вреда, но правильная дозировка позволит экономить средства. Для нормальной эксплуатации прово­дится контроль жесткости (в расчете на СаСО3), суммарной концентрации ионогенных примесей, удельной электропроводности, каустической ще­лочности, показателя концентрации водородных ионов (рН) воды. Благодаря простоте и большому диапазону надежности Гидро-Икс может приме­няться как ручным дозированием, так и в автома­тическом режиме. При желании потребитель мо­жет заказать систему контроля и компьютерного управления процессом.

    Впервые наружная коррозия экранных труб была обнаружена на двух электростанциях у котлов высоко­го давления ТП-230-2, работавших на угле марки АШ и сернистом мазуте и находившихся до того в эксплуата­ции около 4 лет. Наружная поверхность труб подверга­лась коррозионному разъеданию со стороны, обращен­ной в топку, в зоне максимальной температуры факела. 88

    Разрушались преимущественно трубы средней (по ширине) части топки, непосредственно над зажигатель­ным. поясом. Широкие и относительно неглубокие корро­зионные язвы имели неправильную форму и часто смы­кались между собой, вследствие чего поврежденная поверхность труб была неровной, бугристой. В середине наиболее глубоких язв появились свищи, и через них начали вырываться струи воды и пара.

    Характерным было полное отсутствие такой коррозии на экранных трубах котлов среднего давления этих элек­тростанций, хотя среднего давления находились там в эксплуатации значительно "более длительное время.

    В последующие годы наружная коррозия экранных труб появилась и на других котлах высокого давления, работавших на твердом топливе. Зона коррозионных разрушений распространялась иногда на значительную высоту; в отдельные местах толщина стенок труб в ре­зультате коррозии уменьшалась до 2-3 мм. Было заме­чено также, что эта коррозия практически отсутствует в котлах высокого давления, работающих на мазуте.

    Наружная коррозия экранных труб была обнаружена у котлов ТП-240-1 после 4 лет эксплуатации, работающих при давлении в барабанах 185 ат. В этих котлах сжи­гался подмосковный бурый уголь, имевший влажность около 30%; мазут сжигали только при растопке. У этих котлов коррозионные разрушения также возникали в зо­не наибольшей тепловой нагрузки экранных труб. Осо­бенность процесса коррозии заключалась в том, что тру­бы разрушались как со стороны, обращенной в топку, так и со стороны, обращенной к обмуровке (рис. 62).

    Эти факты показывают, что коррозия экранных труб зависит прежде всего от температуры их поверхности. У котлов среднего давления вода испаряется при темпе­ратуре около 240° С; у котлов, рассчитанных на давле­ние 110 ат, расчетная температура кипения воды равна 317° С; в котлах ТП-240-1 вода кипит при температуре 358° С. Температура наружной поверхности экранных труб обычно превышает температуру кипения примерно на 30-40° С.

    Можно. предположить, что интенсивная наружная коррозия металла начинается при повышении его тем­пературы до 350° С. У котлов, рассчитанных на давле­ние 110 ат, эта температура достигается лишь с огневой стороны труб, а у котлов, имеющих давление 185 ат, она соответствует температуре воды в трубах. Именно поэтому коррозия экранных труб со стороны обмуров­ки наблюдалась только у этих котлов.

    Подробное изучение вопроса было произведено на котлах ТП-230-2, работавших на одной из упомянутых электростанций . Там отбирались пробы газов и горя-

    Щих частиц из факела на расстоянии около 25 мм от экранных труб. Близ фронтового экрана в зоне интен­сивной наружной коррозии труб топочные газы почти не содержали свободного кислорода. Вблизи же заднего экрана, у которого наружная коррозия труб почти от­сутствовала, свободного кислорода в газах было значи­тельно больше. Кроме того, проверка показала, что в районе образования коррозии более 70% проб газов

    Можно "предположить, что в присутствии избыточно­го кислорода сероводород сгорает и коррозии не про­исходит, Но при отсутствии избыточного кислорода се­роводород вступает в химическое соединение с металлом труб. При этом образуется сульфид железа FeS. Этот продукт коррозии действительно был найден в отложе­ниях на экранных трубах.

    Наружной коррозии подвержена не только углеро­дистая сталь, но и хромомолибденовая. В частности, у котлов ТП-240-1 коррозия поражала экранные трубы, изготовленные из стали марки 15ХМ.

    До сих пор отсутствуют проверенные мероприятия для полного предупреждения описанного вида коррозии. Некоторое уменьшение скорости разрушения. металла до­стигалось. после наладки процесса горения, в частности при увеличении избытка воздуха в топочных газах.

    27. КОРРОЗИЯ ЭКРАНОВ ПРИ СВЕРХВЫСОКОМ ДАВЛЕНИИ

    В этой книге вкратце рассказано об условиях работы металла паровых котлов современных электростанций. Но прогресс энергетики в СССР продолжается, и теперь вступает в строй большое число новых котлов, рассчи­танных на более высокие давления и температуры пара. В этих условиях большое значение имеет практический опыт эксплуатации нескольких котлов ТП-240-1, рабо­тающих с 1953-1955 гг. при давлении 175 ат (185 ат в барабане). Весьма ценны, >в частности, сведения о кор­розии их экранов.

    Экраны этих котлов были подвержены коррозии как с наружной, так и с внутренней стороны. Их наружная коррозия описана в предыдущем параграфе этой главы, разрушение же внутренней поверхности труб не похоже ни на один из описанных выше видов коррозии металла

    Разъедание происходило в основном с огневой стороны верхней части наклонных труб холодной воронки и сопровождалось появле­нием коррозионных раковин (рис. 63,а). В дальнейшем число таких раковин увеличивалось, и возникала сплошная полоса (иногда две параллельные. полосы) разъеденного металла (рис. 63,6). Характер­ным являлось также отсутствие коррозии в зоне сварных стыков.

    Внутри труб имелся налет рыхлого шлама толщиной 0,1-0,2 мм, состоявшего в основном из окислов железа и меди. Увеличение кор­розионного разрушения металла не сопровождалось увеличением толщины слоя шлама, следовательно, коррозия под слоем шлама не была основной причиной разъедания внутренней поверхности экран­ных труб.

    В котловой воде поддерживался режим чистофосфатной щелоч­ности. Фосфаты вводились в котел не.непрерывно, а периодически.

    Большое значение имело то обстоятельство, что температура металла труб периодически резко.повышалась и иногда была выше 600° С (рис. 64). Зона наиболее частого и максимального повыше­ния температуры совпадала с зоной наибольшего разрушения ме­талла. Снижение давления в котле до 140-165 ат (т. е. до давле­ния, при котором работают новые серийные котлы) не изменяло характера временного повышения температуры труб, но сопровож­далось значительным снижением максимального значения этой тем­пературы. Причины такого периодического повышения температуры огневой стороны наклонных труб холодной. воронки еще подробно не изучены.

    В настоящей книге рассматриваются конкретные во­просы, связанные с работой стальных деталей парового котла. Но для изучения этих сугубо практических вопро­сов необходимо знать общие сведения, касающиеся строения стали и ее " свойств. В схемах, показывающих строение металлов, атомы иногда изображают в виде соприкасающихся друг с дру­гом шаров (рис. 1). Такие схемы по­казывают расстановку атомов в ме­талле, но в них трудно наглядно пока­зать расположение атомов друг отно­сительно друга.

    Эрозией называется постепенное разрушение поверх­ностного слоя металла под влиянием механического воз­действия. Наиболее распространенным видом эрозии стальных элементов - парового котла является их истира­ние твердыми частицами золы, движущейся вместе с ды­мовыми газами. При длительном истирании происходит постепенное уменьшение толщины стенок труб, а затем их деформация и разрыв под действием внутреннего давления.