Эксперименты 21 века. Пять самых известных психологических экспериментов над людьми

  • Дата: 25.11.2019

Сотни тысяч физических опытов было поставлено за тысячелетнюю историю науки. Сложно отобрать несколько «самых-самых».Среди физиков США и Западной Европы был проведен опрос. Исследователи Роберт Криз и Стони Бук просили их назвать наиболее красивые за всю историю физические эксперименты. Об опытах, вошедших в первую десятку по итогам выборочного опроса Криза и Бука, рассказал научный работник Лаборатории нейтринной астрофизики высоких энергий, кандидат физико-математических наук Игорь Сокальский.

1. Эксперимент Эратосфена Киренского

Один из самых древних известных физических экспериментов, в результате которого был измерен радиус Земли, был проведен в III веке до нашей эры библиотекарем знаменитой Александрийской библиотеки Эрастофеном Киренским. Схема эксперимента проста. В полдень, в день летнего солнцестояния, в городе Сиене (ныне Асуан) Солнце находилось в зените и предметы не отбрасывали тени. В тот же день и в то же время в городе Александрии, находившемся в 800 километрах от Сиена, Солнце отклонялось от зенита примерно на 7°. Это составляет около 1/50 полного круга (360°), откуда получается, что окружность Земли равна 40 000 километров, а радиус 6300 километров. Почти невероятным представляется то, что измеренный столь простым методом радиус Земли оказался всего на 5% меньше значения, полученного самыми точными современными методами, сообщает сайт «Химия и жизнь».

2. Эксперимент Галилео Галилея

В XVII веке господствовала точка зрения Аристотеля, который учил, что скорость падения тела зависит от его массы. Чем тяжелее тело, тем быстрее оно падает. Наблюдения, которые каждый из нас может проделать в повседневной жизни, казалось бы, подтверждают это. Попробуйте одновременно выпустить из рук легкую зубочистку и тяжелый камень. Камень быстрее коснется земли. Подобные наблюдения привели Аристотеля к выводу о фундаментальном свойстве силы, с которой Земля притягивает другие тела. В действительности на скорость падения влияет не только сила притяжения, но и сила сопротивления воздуха. Соотношение этих сил для легких предметов и для тяжелых различно, что и приводит к наблюдаемому эффекту.

Итальянец Галилео Галилей усомнился в правильности выводов Аристотеля и нашел способ их проверить. Для этого он сбрасывал с Пизанской башни в один и тот же момент пушечное ядро и значительно более легкую мушкетную пулю. Оба тела имели примерно одинаковую обтекаемую форму, поэтому и для ядра, и для пули силы сопротивления воздуха были пренебрежимо малы по сравнению с силами притяжения. Галилей выяснил, что оба предмета достигают земли в один и тот же момент, то есть скорость их падения одинакова.

Результаты, полученные Галилеем, - следствие закона всемирного тяготения и закона, в соответствии с которым ускорение, испытываемое телом, прямо пропорционально силе, действующей на него, и обратно пропорционально массе.

3. Другой эксперимент Галилео Галилея

Галилей замерял расстояние, которое шары, катящиеся по наклонной доске, преодолевали за равные промежутки времени, измеренный автором опыта по водяным часам. Ученый выяснил, что если время увеличить в два раза, то шары прокатятся в четыре раза дальше. Эта квадратичная зависимость означала, что шары под действием силы тяжести движутся ускоренно, что противоречило принимаемому на веру в течение 2000 лет утверждению Аристотеля о том, что тела, на которые действует сила, движутся с постоянной скоростью, тогда как если сила не приложена к телу, то оно покоится. Результаты этого эксперимента Галилея, как и результаты его эксперимента с Пизанской башней, в дальнейшем послужили основой для формулирования законов классической механики.

4. Эксперимент Генри Кавендиша

После того как Исаак Ньютон сформулировал закон всемирного тяготения: сила притяжения между двумя телами с массами Мит, удаленных друг от друга на расстояние r, равна F=γ (mM/r2), оставалось определить значение гравитационной постоянной γ - Для этого нужно было измерить силу притяжения между двумя телами с известными массами. Сделать это не так просто, потому что сила притяжения очень мала. Мы ощущаем силу притяжения Земли. Но почувствовать притяжение даже очень большой оказавшейся поблизости горы невозможно, поскольку оно очень слабо.

Нужен был очень тонкий и чувствительный метод. Его придумал и применил в 1798 году соотечественник Ньютона Генри Кавендиш. Он использовал крутильные весы - коромысло с двумя шариками, подвешенное на очень тонком шнурке. Кавендиш измерял смещение коромысла (поворот) при приближении к шарикам весов других шаров большей массы. Для увеличения чувствительности смещение определялось по световым зайчикам, отраженным от зеркал, закрепленных на шарах коромысла. В результате этого эксперимента Кавендишу удалось довольно точно определить значение гравитационной константы и впервые вычислить массу Земли.

5. Эксперимент Жана Бернара Фуко

Французский физик Жан Бернар Леон Фуко в 1851 году экспериментально доказал вращение Земли вокруг своей оси с помощью 67-метрового маятника, подвешенного к вершине купола парижского Пантеона. Плоскость качания маятника сохраняет неизменное положение по отношению к звездам. Наблюдатель же, находящийся на Земле и вращающийся вместе с ней, видит, что плоскость вращения медленно поворачивается в сторону, противоположную направлению вращения Земли.

6. Эксперимент Исаака Ньютона

В 1672 году Исаак Ньютон проделал простой эксперимент, который описан во всех школьных учебниках. Затворив ставни, он проделал в них небольшое отверстие, сквозь которое проходил солнечный луч. На пути луча была поставлена призма, а за призмой - экран. На экране Ньютон наблюдал «радугу»: белый солнечный луч, пройдя через призму, превратился в несколько цветных лучей - от фиолетового до красного. Это явление называется дисперсией света.

Сэр Исаак был не первым, наблюдавшим это явление. Уже в начале нашей эры было известно, что большие монокристаллы природного происхождения обладают свойством разлагать свет на цвета. Первые исследования дисперсии света в опытах со стеклянной треугольной призмой еще до Ньютона выполнили англичанин Хариот и чешский естествоиспытатель Марци.

Однако до Ньютона подобные наблюдения не подвергались серьезному анализу, а делавшиеся на их основе выводы не перепроверялись дополнительными экспериментами. И Хариот, и Марци оставались последователями Аристотеля, который утверждал, что различие в цвете определяется различием в количестве темноты, «примешиваемой» к белому свету. Фиолетовый цвет, по Аристотелю, возникает при наибольшем добавлении темноты к свету, а красный - при наименьшем. Ньютон же проделал дополнительные опыты со скрещенными призмами, когда свет, пропущенный через одну призму, проходит затем через другую. На основании совокупности проделанных опытов он сделал вывод о том, что «никакого цвета не возникает из белизны и черноты, смешанных вместе, кроме промежуточных темных

количество света не меняет вида цвета». Он показал, что белый свет нужно рассматривать как составной. Основными же являются цвета от фиолетового до красного.

Этот эксперимент Ньютона служит замечательным примером того, как разные люди, наблюдая одно и то же явление, интерпретируют его по-разному и только те, кто подвергает сомнению свою интерпретацию и ставит дополнительные опыты, приходят к правильным выводам.

7. Эксперимент Томаса Юнга

До начала XIX века преобладали представления о корпускулярной природе света. Свет считали состоящим из отдельных частиц - корпускул. Хотя явления дифракции и интерференции света наблюдал еще Ньютон («кольца Ньютона»), общепринятая точка зрения оставалась корпускулярной.

Рассматривая волны на поверхности воды от двух брошенных камней, можно заметить, как, накладываясь друг на друга, волны могут интерферировать, то есть взаимогасить либо взаимоусиливать друг друга. Основываясь на этом, английский физик и врач Томас Юнг проделал в 1801 году опыты с лучом света, который проходил через два отверстия в непрозрачном экране, образуя, таким образом, два независимых источника света, аналогичных двум брошенным в воду камням. В результате он наблюдал интерференционную картину, состоящую из чередующихся темных и белых полос, которая не могла бы образоваться, если бы свет состоял из корпускул. Темные полосы соответствовали зонам, где световые волны от двух щелей гасят друг друга. Светлые полосы возникали там, где световые волны взаимоусиливались. Таким образом была доказана волновая природа света.

8. Эксперимент Клауса Йонссона

Немецкий физик Клаус Йонссон провел в 1961 году эксперимент, подобный эксперименту Томаса Юнга по интерференции света. Разница состояла в том, что вместо лучей света Йонссон использовал пучки электронов. Он получил интерференционную картину, аналогичную той, что Юнг наблюдал для световых волн. Это подтвердило правильность положений квантовой механики о смешанной корпускулярно-волновой природе элементарных частиц.

9. Эксперимент Роберта Милликена

Представление о том, что электрический заряд любого тела дискретен (то есть состоит из большего или меньшего набора элементарных зарядов, которые уже не подвержены дроблению), возникло еще в начале XIX века и поддерживалось такими известными физиками, как М.Фарадей и Г.Гельмгольц. В теорию был введен термин «электрон», обозначавший некую частицу - носитель элементарного электрического заряда. Этот термин, однако, был в то время чисто формальным, поскольку ни сама частица, ни связанный с ней элементарный электрический заряд не были обнаружены экспериментально. В 1895 году К.Рентген во время экспериментов с разрядной трубкой обнаружил, что ее анод под действием летящих из катода лучей способен излучать свои, Х-лучи, или лучи Рентгена. В том же году французский физик Ж.Перрен экспериментально доказал, что катодные лучи - это поток отрицательно заряженных частиц. Но, несмотря на колоссальный экспериментальный материал, электрон оставался гипотетической частицей, поскольку не было ни одного опыта, в котором участвовали бы отдельные электроны.

Американский физик Роберт Милликен разработал метод, ставший классическим примером изящного физического эксперимента. Милликену удалось изолировать в пространстве несколько заряженных капелек воды между пластинами конденсатора. Освещая рентгеновскими лучами, можно было слегка ионизировать воздух между пластинами и изменять заряд капель. При включенном поле между пластинами капелька медленно двигалась вверх под действием электрического притяжения. При выключенном поле она опускалась под действием гравитации. Включая и выключая поле, можно было изучать каждую из взвешенных между пластинами капелек в течение 45 секунд, после чего они испарялись. К 1909 году удалось определить, что заряд любой капельки всегда был целым кратным фундаментальной величине е (заряд электрона). Это было убедительным доказательством того, что электроны представляли собой частицы с одинаковыми зарядом и массой. Заменив капельки воды капельками масла, Милликен получил возможность увеличить продолжительность наблюдений до 4,5 часа и в 1913 году, исключив один за другим возможные источники погрешностей, опубликовал первое измеренное значение заряда электрона: е = (4,774 ± 0,009)х 10-10 электростатических единиц.

10. Эксперимент Эрнста Резерфорда

К началу XX века стало понятно, что атомы состоят из отрицательно заряженных электронов и какого-то положительного заряда, благодаря которому атом остается в целом нейтральным. Однако предположений о том, как выглядит эта «положительно-отрицательная» система, было слишком много, в то время как экспериментальных данных, которые позволили бы сделать выбор в пользу той или иной модели, явно недоставало. Большинство физиков приняли модель Дж.Дж.Томсона: атом как равномерно заряженный положительный шар диаметром примерно 108 см с плавающими внутри отрицательными электронами.

В 1909 году Эрнст Резерфорд (ему помогали Ганс Гейгер и Эрнст Марсден) поставил эксперимент, чтобы понять действительную структуру атома. В этом эксперименте тяжелые положительно заряженные а-частицы, движущиеся со скоростью 20 км/с, проходили через тонкую золотую фольгу и рассеивались на атомах золота, отклоняясь от первоначального направления движения. Чтобы определить степень отклонения, Гейгер и Марсден должны были с помощью микроскопа наблюдать вспышки на пластине сцинтиллятора, возникавшие там, где в пластину попадала а-частица. За два года было сосчитано около миллиона вспышек и доказано, что примерно одна частица на 8000 в результате рассеяния изменяет направление движения более чем на 90° (то есть поворачивает назад). Такого никак не могло происходить в «рыхлом» атоме Томсона. Результаты однозначно свидетельствовали в пользу так называемой планетарной модели атома - массивное крохотное ядро размерами примерно 10-13 см и электроны, вращающиеся вокруг этого ядра на расстоянии около 10-8 см.

Современные физические эксперименты значительно сложнее экспериментов прошлого. В одних приборы размещают на площадях в десятки тысяч квадратных километров, в других заполняют объем порядка кубического километра. А третьи вообще скоро будут проводить на других планетах.

Почему люди ведут себя так тем или иным способом. Психологи обдумывали этот вопрос с древних времен. Большая часть современных знаний о человеческом разуме основана на экспериментах, которые проводили психологи в прошлом столетии.

1. Скрипач в станции метро


Как много людей находят минутку, чтобы остановиться и оценить красоту вокруг себя. Согласно эксперимента, проведенного в 2007 году, скорее всего, почти никто этого не делает. Всемирно известный скрипач Джош Белл побыл день уличным музыкантом на станции метро в Вашингтоне, чтобы увидеть, сколько людей остановится и послушает его игру.
Несмотря на то, что он играл на скрипке ручной работы ценой 3,5 миллиона долларов, и только что были полностью распроданы билеты ценой по $ 100 на его концерт в Бостоне, лишь очень немногие люди останавливались, чтобы оценить его прекрасную игру. В итоге Белл заработал ничтожные $ 32 за целый день.

2. Маленький Альберт


Эксперимент «Маленький Альберт» похож на эксперимент с собакой Павлова, но проводился он с людьми. Вероятно, это одно из самых неэтичных психологических исследований всех времен. В ходе эксперимента, проведенного в 1920 году, Джон Б. Уотсон и его партнер Розали Рейнер в Университете Джона Хопкинса пытались выработать у девятимесячного мальчика иррациональные страхи. Уотсон сначала поместил белую крысу перед младенцем, который сначала не выказывал страха.
Затем он начал бить молотком по стальному стержню, пугая мальчика по имени Альберт, каждый раз как он прикасался к крысе. Через некоторое время мальчик начал плакать и проявлять признаки страха каждый раз, когда крыса появлялась в комнате. Уотсон также выработал подобные условные рефлексы с другими животными и объектами, пока Альберт не начал бояться их всех.

3. Эксперимент Милгрэма


Эксперимент, проведенный в 1961 году психологом Йельского университета Стэнли Милгрэмом, измерял готовность людей повиноваться авторитетным личностям, которые приказывали им совершать действия, которые противоречили нравственным понятиям подопытных. Участникам эксперимента говорили, что они должны отыгрывать роль «учителя» и бить электрическим током «ученика», который якобы находился в другой комнате, каждый раз, когда он отвечал на вопрос неправильно.
На самом деле, током никого не били, а «учителю», нажимавшему кнопку, Милгрэм проигрывал звукозапись криков, создавая видимость, будто «ученик» страдает от сильной боли и хочет закончить эксперимент. Несмотря на эти протесты, многие участники продолжали эксперимент, поскольку им приказали так делать, постоянно «увеличивая напряжение» (так они думали) после каждого неправильного ответа. Подобные эксперименты свидетельствуют о том, что люди готовы идти против своей совести, если им приказывают сделать это «начальник».

4. Зефирный эксперимент


Может быть отложенное удовольствие индикатором будущего успеха? Именно это пытался определить Уолтер Мишел из Стэнфордского университета в 1972 году. Во время так называемого «Зефирного эксперимента» детей в возрасте от четырех до шести лет оставляли в комнате, где перед ними на стол клали зефир. После этого экспериментатор выходил из комнаты на 15 минут и говорил, что ребенок получит второй зефир, если первый еще будет лежать на столе к его возвращению.
Экзаменатор записал, как долго каждый ребенок сопротивлялся искушению съесть зефир, а затем отметил, коррелирует ли это с успехом ребенка в обучении. Меньшая часть из 600 детей сразу же съела зефир, большинство не вытерпели 15 минут, и лишь одна треть сумела отложить удовольствие достаточно надолго, чтобы получить второй зефир.
В последующих исследованиях Мишел обнаружил, что те, кто сумел отложить удовольствие, получали более высокие баллы при учебе, чем их сверстники, а это означает, что подобная характеристика, вероятно, остается у человека на всю жизнь.

5. Эффект свидетеля


В случае возникновения чрезвычайной ситуации (ДТП, преступления и т.д.), большинство людей, вероятно, хотели бы оказаться в оживленном районе, поскольку там у них был бы больший шанс получить помощь. Вопреки распространенному мнению, если вокруг много людей, то это ничего не гарантирует.
Психологический феномен, который называется «эффект свидетеля», проявляется в том, что люди чаще помогают кому-то в беде, если вокруг нет (или совсем мало) других свидетелей. Если вокруг много людей, то все будут стоять и глазеть, считая, что должен помочь кто-то другой.

6. Эксперимент Аша


Эксперимент Аша является еще одним известным примером искушения соответствовать окружающим в ситуации, когда вокруг много людей. Во время этой серии экспериментов, проведенных в 1950-х годах, испытуемого помещали в комнату с другими участниками, которые все были «подсадными утками». Им по очереди показывали две карточки, на одной из которых была изображена одна линия, а на другой – три, причем только одна из них такой же длины, как и на первой карточке.
Испытуемых просили назвать, какая из этих трех линий совпадает по длине с линией на первой карточке. «Подсадные утки» все в один голос давали один и тот же неправильный ответ. В итоге испытуемый тоже начинал повторять за ними, хоть этот ответ и был заведомо неправильным. Результаты еще раз показали, что люди, как правило, стараются быть «как все» в толпе.

7. Стэнфордский тюремный эксперимент


Стэнфордский тюремный эксперимент считается одним из самых неэтичных психологических экспериментов всех времен. В нем изучали психологические эффекты, которые условия тюрьмы могут оказать на поведение человека. В 1971 году экспериментальная модель тюрьмы была построена в подвале здания факультета психологии Стэнфордского университета.
Случайным образом были выбраны 24 студента мужского пола, которые играли роль или заключенного или надзирателя в течение двух недель. Студенты в итоге настолько адаптировались к своей роли, что начали становиться агрессивными.

8. Эксперимент с куклой Бобо


В течение 1960-х годов ходило много споров о том, как генетика, факторы окружающей среды и социальное обучение влияют на развитие детей. В 1961 году Альберт Бандура провел эксперимент с куклой Бобо, чтобы доказать, что человеческое поведение вытекает из социальной имитации, а не обусловлено наследственными генетическими факторами.
Он создал три группы детей: одной взрослые демонстрировали агрессивное поведение по отношению к кукле Бобо, другой показывали, как взрослый играет с куклой Бобо, а третья группа была контрольной. Результаты показали, что дети, которые подверглись воздействию агрессивной модели, сами были более склонны проявлять агрессивное поведение по отношению к кукле, в то время как другие группы не продемонстрировали агрессивного поведения.

9. Собака Павлова


Имя академика Павлова сегодня неразрывно ассоциируется с собаками и колокольчиком. Этот знаменитый эксперимент сделал понятие условного рефлекса широко распространенным. Павлов исследовал скорость слюноотделения у собак при приеме пищи.
Он заметил, что у собаки начинается слюноотделение даже при виде пищи, поэтому он начал звонить в колокольчик каждый раз, когда давал еду собаке. Со временем собаки стали ассоциировать звон колокольчика с пищей и у них начинала выделяться слюна при звуке колокольчика.

10. Лестница-пианино


Эксперимент Volkswagen под названием «Теория удовольствия» доказывает, что поведение людей может быть изменено в лучшую сторону, если сделать рутинные мероприятия более фановыми. В недавнем эксперименте, компания сделала музыкальные ступеньки в виде клавиш пианино на лестнице станции метро в Стокгольме, чтобы увидеть, будет ли больше людей выбирать более здоровый вариант подниматься из метро по обычной лестнице, а не на эскалаторе. В тот же день, на 66 процентов больше людей поднялось по лестнице, чем обычно.

Опыты над людьми - дело сложное и часто непредсказуемое, даже когда это не противоречит закону. Тем не менее зачастую только так - посредством социальных экспериментов - удаётся понять как особенности человеческого поведения, так и специфику исторических событий.

Один из известнейших социальных опытов проводился, чтобы объяснить конфликты в местах лишения свободы. Это знаменитый Стэнфордский эксперимент. По заказу правительства психолог Филипп Зимбардо набрал группу из 24 добровольцев, которых случайным образом поделил на две равные подгруппы: охранников и заключенных. Предполагалось, что в ходе исследования люди будут жить в условиях, схожих с тюремными, в то время как психологи будут анализировать изменения в их поведении.

Почти сразу ситуация вышла из-под контроля. Охранники стали проявлять склонность к садизму, унижали заключённых, заставляли их делать бессмысленные физические упражнения, лишали матрасов за непослушание, заставляли чистить унитазы, превращали душ в привилегию. Заключенные сначала пытались сопротивляться, даже устроили бунт. Вскоре у них начали проявляться различные неврозы и психические расстройства. Несколько человек даже заменили из-за резкого ухудшения здоровья. Когда один из новоприбывших объявил голодовку в знак протеста против садизма, его соседи посчитали это хулиганством и активно приветствовали фактические пытки со стороны надзирателей. Эксперимент продлился всего шесть дней вместо двух недель.

В кратчайшие сроки люди вжились в роли садистов и жертв


Примечательно, что лишь один человек явно осудил происходившее и поставил под сомнение необходимость подобных испытаний. Это была аспирантка и невеста Зимбардо, которая в итоге и добилась досрочного прекращения эксперимента.

К числу самых ужасных социальных экспериментов относят опыт Венделла Джонсона из Университета Айовы. Участниками его исследования стали дети-сироты. 22 ребёнка были разделены на две группы, которые затем проходили обучение. Одним в ходе испытаний постоянно говорили, что они молодцы, хорошо и правильно говорят и отлично со всем справляются. Другим, наоборот, активно прививали комплекс неполноценности. Исследование было сфокусировано на вопросе о природе заикания, так что детей постоянно - по поводу и без - обзывали заиками. В конце концов, в этой группе начались серьёзные проблемы с речью.

Из-за оскорблений заикаться стали и те дети, которые хорошо говорили

Эксперимент Джонсона обернулся проблемами со здоровьем, которые сохранились у испытуемые до конца дней - некоторых из них так и не смогли вылечить. То, что подобные исследования неприемлемы, понимали и в самом университете. До последнего информацию о работе Джонсона держали в секрете.

Широко известны эксперименты о влиянии большинства на отдельных людей, когда человек оказывается среди подставных актёров и готов, следуя мнению группы, назвать квадрат кругом, а красное - белым. Но насколько меньшинство может изменять представления группы и способны ли единицы определить мнение большинства? Ответы на эти вопросы искал Серж Московичи. В рамках одного из экспериментов группе из 6 человек показывали серии карточек и просили называть цвета. Двое подставных участников исследования всегда называли зелёный синим. Это привело к тому, что 8 процентов от числа остальных ответов были неверными - представители большинства поддавались влиянию группы диссидентов. Исследования показали, что идеи меньшинства распространяется в сообществе по нарастающей, стоит лишь переманить на свою сторону первого представителя большинства.

Московичи выявили наиболее эффективные способы изменения общественного мнения. Постоянное повторение одного тезиса и уверенность, безусловно, важны. Но ещё лучше, если диссиденты согласны с сообществом почти по всем пунктам, кроме одного. Тогда группа готова будет уступить, и меньшинство станет большинством.

Большинство людей настолько послушны, что готовы пойти даже на убийство под руководством авторитета. Это показали опыты, которые прославили американского социального психолога Стэнли Милгрэма. В испытании участвовали трое. Один из них - руководитель эксперимента. Двое других, согласно легенде, - испытуемые. На самом деле, лишь один из них был реальным объектом исследования, пару ему составлял профессиональный актёр.

В ходе сфальсифицированной жеребьёвки испытуемому доставалась роль ментора, в то время как второй человек становился учащимся и должен был отвечать на вопросы, как на экзамене. Под руководством руководителя эксперимента ментор наказывал за неверные ответы: он «активировал» электроды, подключённые к актёру. Никакого электричества, на самом деле, не было. «Учащийся» лишь изображал разные степени страдания от ударов током и молил о пощаде.

Сначала 45 вольт, потом 60, потом - по распоряжению руководителя эксперимента - ещё больше. Когда актёр орал и требовал прекратить эксперимент, социолог настаивал на продолжении. В какой-то момент из соседней комнаты прекращали доноситься крики - на панели перед «ментором» значилось 220 вольт, 300… Зная, что партнёр по эксперименту испытывает ужасающие мучения, испытуемые под чужим руководством доводили уровень напряжения до 450.

Лишь треть смогла настоять на своём и перестать мучить другого

Результаты потом были подтверждены другими аналогичными исследованиями. Это был шок - в послевоенные годы американцам предъявили доказательство того, что и их соседи могли бы пойти убивать людей в концлагеря под руководством сомнительных авторитетов. Более того, многие участники эксперименты верили, что наказывают «учащегося» по заслугам.

Размышления о том, как немецкий народ мог поддерживать нацизм, примерно в то же время обернулись экспериментом по созданию организации с тоталитарной идеологией. Учитель истории калифорнийской школы Рон Джонс решил на практике объяснить десятиклассникам, почему нацистская идеология была так популярна. Эти занятия длились всего неделю.

Сначала учитель рассказал о силе дисциплины: он требовал сидеть за партами смирно, входить и выходить из класса бесшумно и по первому же распоряжению. Школьники с удовольствием стали втягиваться в эту игру. Потом были уроки о силе общности: подростки скандировали лозунг «Сила в дисциплине, сила в общности», встречали друг друга специфическим приветствием, получили членские билеты и создали символику организации под названием «Третья волна». Наконец, дошло до «силы действия». На этом этапе в организацию вовлекали новых участников, а внутри появились ответственные за поиск «клеветников» и инакомыслящих. С каждым днём на эти занятия стало ходить всё больше людей.

Даже директор школы приветствовал ученого салютом «Третьей волны»


В четверг учитель рассказал школьникам, будто они участвуют в общегосударственной программе и такие организации создаются в разных штатах. В будущем, согласно этой легенде, молодёжь должна была бы поддержать нового кандидата в президенты. Джон анонсировал телеобращение в полдень пятницы, когда якобы должны были объявить мобилизацию «Третьей волны». В час икс в аудитории перед телевизором собралось около 200 школьников. Естественно, никакого обращения не было. Учащимся объяснили, что это пример того, насколько нацизму легко было бы укорениться даже в демократической стране. Подростки расходились подавленными, некоторые - со слезами на глазах. Примечательно, что широкой общественности об эксперименте Джонса стало известно лишь спустя годы.


Почему люди ведут себя так тем или иным способом. Психологи обдумывали этот вопрос с древних времен. Большая часть современных знаний о человеческом разуме основана на экспериментах, которые проводили психологи в прошлом столетии.

1. Скрипач в станции метро


Как много людей находят минутку, чтобы остановиться и оценить красоту вокруг себя. Согласно эксперимента, проведенного в 2007 году, скорее всего, почти никто этого не делает. Всемирно известный скрипач Джош Белл побыл день уличным музыкантом на станции метро в Вашингтоне, чтобы увидеть, сколько людей остановится и послушает его игру.

Несмотря на то, что он играл на скрипке ручной работы ценой 3,5 миллиона долларов, и только что были полностью распроданы билеты ценой по $ 100 на его концерт в Бостоне, лишь очень немногие люди останавливались, чтобы оценить его прекрасную игру. В итоге Белл заработал ничтожные $ 32 за целый день.

2. Маленький Альберт


Эксперимент «Маленький Альберт» похож на эксперимент с собакой Павлова, но проводился он с людьми. Вероятно, это одно из самых неэтичных психологических исследований всех времен. В ходе эксперимента, проведенного в 1920 году, Джон Б. Уотсон и его партнер Розали Рейнер в Университете Джона Хопкинса пытались выработать у девятимесячного мальчика иррациональные страхи. Уотсон сначала поместил белую крысу перед младенцем, который сначала не выказывал страха.

Затем он начал бить молотком по стальному стержню, пугая мальчика по имени Альберт, каждый раз как он прикасался к крысе. Через некоторое время мальчик начал плакать и проявлять признаки страха каждый раз, когда крыса появлялась в комнате. Уотсон также выработал подобные условные рефлексы с другими животными и объектами, пока Альберт не начал бояться их всех.

3. Эксперимент Милгрэма


Эксперимент, проведенный в 1961 году психологом Йельского университета Стэнли Милгрэмом, измерял готовность людей повиноваться авторитетным личностям, которые приказывали им совершать действия, которые противоречили нравственным понятиям подопытных. Участникам эксперимента говорили, что они должны отыгрывать роль «учителя» и бить электрическим током «ученика», который якобы находился в другой комнате, каждый раз, когда он отвечал на вопрос неправильно.

На самом деле, током никого не били, а «учителю», нажимавшему кнопку, Милгрэм проигрывал звукозапись криков, создавая видимость, будто «ученик» страдает от сильной боли и хочет закончить эксперимент. Несмотря на эти протесты, многие участники продолжали эксперимент, поскольку им приказали так делать, постоянно «увеличивая напряжение» (так они думали) после каждого неправильного ответа. Подобные эксперименты свидетельствуют о том, что люди готовы идти против своей совести, если им приказывают сделать это «начальник».

4. Зефирный эксперимент


Может быть отложенное удовольствие индикатором будущего успеха? Именно это пытался определить Уолтер Мишел из Стэнфордского университета в 1972 году. Во время так называемого «Зефирного эксперимента» детей в возрасте от четырех до шести лет оставляли в комнате, где перед ними на стол клали зефир. После этого экспериментатор выходил из комнаты на 15 минут и говорил, что ребенок получит второй зефир, если первый еще будет лежать на столе к его возвращению.

Экзаменатор записал, как долго каждый ребенок сопротивлялся искушению съесть зефир, а затем отметил, коррелирует ли это с успехом ребенка в обучении. Меньшая часть из 600 детей сразу же съела зефир, большинство не вытерпели 15 минут, и лишь одна треть сумела отложить удовольствие достаточно надолго, чтобы получить второй зефир.

В последующих исследованиях Мишел обнаружил, что те, кто сумел отложить удовольствие, получали более высокие баллы при учебе, чем их сверстники, а это означает, что подобная характеристика, вероятно, остается у человека на всю жизнь.

5. Эффект свидетеля


В случае возникновения чрезвычайной ситуации (ДТП, преступления и т.д.), большинство людей, вероятно, хотели бы оказаться в оживленном районе, поскольку там у них был бы больший шанс получить помощь. Вопреки распространенному мнению, если вокруг много людей, то это ничего не гарантирует.

Психологический феномен, который называется «эффект свидетеля», проявляется в том, что люди чаще помогают кому-то в беде, если вокруг нет (или совсем мало) других свидетелей. Если вокруг много людей, то все будут стоять и глазеть, считая, что должен помочь кто-то другой.

6. Эксперимент Аша


Эксперимент Аша является еще одним известным примером искушения соответствовать окружающим в ситуации, когда вокруг много людей. Во время этой серии экспериментов, проведенных в 1950-х годах, испытуемого помещали в комнату с другими участниками, которые все были «подсадными утками». Им по очереди показывали две карточки, на одной из которых была изображена одна линия, а на другой – три, причем только одна из них такой же длины, как и на первой карточке.

Испытуемых просили назвать, какая из этих трех линий совпадает по длине с линией на первой карточке. «Подсадные утки» все в один голос давали один и тот же неправильный ответ. В итоге испытуемый тоже начинал повторять за ними, хоть этот ответ и был заведомо неправильным. Результаты еще раз показали, что люди, как правило, стараются быть «как все» в толпе.

7. Стэнфордский тюремный эксперимент


Стэнфордский тюремный эксперимент считается одним из самых неэтичных психологических экспериментов всех времен. В нем изучали психологические эффекты, которые условия тюрьмы могут оказать на поведение человека. В 1971 году экспериментальная модель тюрьмы была построена в подвале здания факультета психологии Стэнфордского университета.

Случайным образом были выбраны 24 студента мужского пола, которые играли роль или заключенного или надзирателя в течение двух недель. Студенты в итоге настолько адаптировались к своей роли, что начали становиться агрессивными.

8. Эксперимент с куклой Бобо


В течение 1960-х годов ходило много споров о том, как генетика, факторы окружающей среды и социальное обучение влияют на развитие детей. В 1961 году Альберт Бандура провел эксперимент с куклой Бобо, чтобы доказать, что человеческое поведение вытекает из социальной имитации, а не обусловлено наследственными генетическими факторами.

Он создал три группы детей: одной взрослые демонстрировали агрессивное поведение по отношению к кукле Бобо, другой показывали, как взрослый играет с куклой Бобо, а третья группа была контрольной. Результаты показали, что дети, которые подверглись воздействию агрессивной модели, сами были более склонны проявлять агрессивное поведение по отношению к кукле, в то время как другие группы не продемонстрировали агрессивного поведения.

9. Собака Павлова


Имя академика Павлова сегодня неразрывно ассоциируется с собаками и колокольчиком. Этот знаменитый эксперимент сделал понятие условного рефлекса широко распространенным. Павлов исследовал скорость слюноотделения у собак при приеме пищи.

Он заметил, что у собаки начинается слюноотделение даже при виде пищи, поэтому он начал звонить в колокольчик каждый раз, когда давал еду собаке. Со временем собаки стали ассоциировать звон колокольчика с пищей и у них начинала выделяться слюна при звуке колокольчика.

10. Лестница-пианино


Эксперимент Volkswagen под названием «Теория удовольствия» доказывает, что поведение людей может быть изменено в лучшую сторону, если сделать рутинные мероприятия более фановыми. В недавнем эксперименте, компания сделала музыкальные ступеньки в виде клавиш пианино на лестнице станции метро в Стокгольме, чтобы увидеть, будет ли больше людей выбирать более здоровый вариант подниматься из метро по обычной лестнице, а не на эскалаторе. В тот же день, на 66 процентов больше людей поднялось по лестнице, чем обычно.

Невероятные факты

Цветы Дарвина

Большинство людей знакомы с деятельностью Чарльза Дарвина и с его знаменитым путешествием в Южную Америку. Он сделал свои наиболее важные открытия на Галапагосских островах, где каждый из 20 островов обладал своим уникальным набором видов, идеально адаптированных для проживания в тех условиях. Но мало кто знает об экспериментах Дарвина после того, как он вернулся в Англию. Некоторые из них были сосредоточены на орхидеях.

В процессе выращивания и изучения нескольких видов орхидей, он понял, что сложные цветки орхидей – это адаптация, позволяющая цветам привлекать насекомых, которые затем переносят пыльцу на соседние растения. Каждое насекомое специально предназначено для опыления одного типа орхидеи. Взять, к примеру, орхидею Вифлеемская звезда (Angraecum sesquipedale), нектар в которой хранится на глубине 30 сантиметров. Дарвин предугадал, что обязательно должно быть насекомое, которое опыляет этот вид орхидеи. Конечно, в 1903 году, ученые открыли вид под названием сумеречная бабочка, обладающая длинным хоботком, который может дотянуться до нектара этого вида орхидеи.

Дарвин использовал данные, которые он собрал об орхидеях и их насекомых опылителях для укрепления своей теории естественного отбора. Он утверждал, что перекрестно опыляемые орхидеи более жизнеспособны, чем самоопыляемые, поскольку самоопыление снижает генетическое разнообразие, что, в конечном итоге, оказывает прямое воздействие на выживаемость вида. Так, три года спустя, после того, как он впервые описал естественный отбор в "О происхождении видов", Дарвин провел еще несколько экспериментов на цветах и укрепил свои утверждения о рамках эволюции.

Расшифровка ДНК

Джеймс Уотсон (James Watson) и Фрэнсис Крик (Francis Crick) подошли очень близко к расшифровке ДНК, но их открытия в значительной степени зависят от работ Альфреда Херши (Alfred Hershey) и Марты Чейз (Martha Chase), они в 1952 году провели известный по сей день эксперимент, который помог им определить как молекулы ДНК связаны с наследственностью. Херши и Чейз работали с типом вируса, известного как бактериофаг. Этот вирус, состоящий из белковой оболочки, окружает нить ДНК, заражает бактериальную клетку, что программирует ее на производство новых зараженных клеток. Затем вирус убивает клетку и на свет появляются новые вирусы. Херши и Чейз знали об этом, но, при этом, они не знали, какой компонент – белок или ДНК – был ответственен за происходящее. Они не знали это до проведения своего гениального "блендер" эксперимента, который вывел их на ДНК рибонуклеиновые кислоты.

После эксперимента Херши и Чейз многие ученые, такие как Розалинд Франклин (Rosalind Franklin) сосредоточились на изучении ДНК и его молекулярную структуру. Франклин использовал технику, называемую рентгеновской дифракцией для изучения ДНК. Она подразумевает "вторжение" Х-лучей в волокна очищенной ДНК. При взаимодействии лучей с молекулой, они "сбиваются" с первоначального курса и становятся дифрагированными. Далее дифрагированные лучи образуют картинку уникальной молекулы, готовой для анализа. Знаменитая фотография Франклина показывает Х-образную кривую, которую Уотсон и Крик обозначили как "подпись молекулы ДНК". Они смогли также определить ширину спирали, глядя на изображение Франклина.

Первая вакцинация

До полной глобальной ликвидации оспы в конце 20 века, это заболевание представляло собой серьезную проблему. В 18 веке, заболевание вызванное вирусом оспы, убивало каждого десятого ребенка, родившегося в Швеции и Франции. "Поимка" вируса было единственной возможностью «лечения». Это привело к тому, что люди сами пытались поймать вирус из гнойных язв. К сожалению, многие из них умерли при опасной попытке самостоятельной прививки.

Эдвард Дженнер (Edward Jenner), британский врач, начал изучать вирус и разрабатывать эффективные методы лечения. Генезисом его экспериментов стало наблюдение того, что доярки, проживающие в его родном городе, часто заражались вирусом коровьей оспы, несмертельным заболеванием, похожим на обычную оспу. Доярки, которые заражались коровьей оспой, казалось, были защищены от инфекции оспы, поэтому в 1796 году Дженнер решил проверить, может ли человек развить иммунитет к обычной оспе, если его заразить вирусом коровьей оспы. Мальчика, над которым Дженнер решил провести свой эксперимент, звали Джеймс Фиппс (James Phipps). Дженнер сделал надрез на руке Фиппса и заразил его коровьей оспой. Через некоторое время мальчик выздоровел. 48 дней спустя доктор ввел в его организм вирус обычной оспы и обнаружил у мальчика иммунитет.

Сегодня ученые знают, что вирусы коровьей и обычной оспы настолько похожи, что иммунная система человека не в состоянии их отличить.

Доказательство существования атомного ядра

Физик Эрнест Резерфорд (Ernest Rutherford) уже выиграл Нобелевскую премию в 1908 году за свои радиоактивные работы, при этом в тот период времени он также начал проводить эксперименты по выявлении структуры атома. Эксперименты были основаны на его предыдущих исследованиях, которые показали, что радиоактивность состоит из двух типов лучей – альфа и бета. Резерфорд и Ганс Гейгер (Hans Geiger) установили, что альфа-лучи – это потоки положительно заряженных частиц. Когда он выпускал альфа-частицы на экран, они создавали четкое и резкое изображение. Но если между источником альфа-излучения и экраном располагался тонкий лист из слюды, то полученное изображение было размытым. Было ясно, что слюда рассеивала некоторые альфа-частицы, но как и почему это происходило, на тот момент не было понятно.

В 1911 году, физик расположил тонкий лист золотой фольги между источником альфа-излучения и экраном, толщиной 1-2 атома. Также он разместил еще один экран перед источником альфа-излучения для того, чтобы понять какие из частиц отклоняются назад. На экране позади фольги, Резерфорд наблюдал диффузную картину, аналогичную той, какую он видел при использовании листа из слюды. Увиденное на экране перед фольгой очень удивило Резерфорда, поскольку несколько альфа-частиц отскочили прямо назад. Резерфорд заключил, что сильный положительный заряд, находящийся в сердце атомов золота, отправил альфа-частицы обратно к источнику. Он назвал этот сильный положительный заряд "ядром", и заявил, что по сравнению с общим размером атома, его ядро должно быть очень мало, в противном случае назад бы вернулось гораздо большее количество частиц. Сегодня ученые аналогично Резерфорду визуализируют атомы: маленькие, положительно заряженные ядра в окружении большого, в основном пустого пространства, в котором обитает несколько электронов.

Рентген

Мы уже говорили выше о рентгеновской дифракции исследований Франклина, но проделанной работой он многим обязан Дороти Кроуфут Ходжкин (Dorothy Crowfoot Hodgkin), одной из трех женщин, которым удалось выиграть Нобелевскую премию по химии. В 1945 году Ходжкин считалась одной из ведущих специалистов мира, практикующих методы рентгеновской дифракции, поэтому не удивительно, что именно она, в конце концов, показала структуру одного из важнейших на сегодняшний день химических веществ в медицине – пенициллина. Александр Флеминг обнаружил убивающее бактерии вещество еще в 1928 году, но ученым потребовалось еще некоторый период времени для того, чтобы очистить вещество в целях разработки эффективного лечения. Таким образом, при помощи атомов пенициллина Ходжкин удалось создать полусинтетические производные пенициллина, что оказалось революцией в борьбе с инфекциями.

Исследования Ходжкин стали известными как рентгеновская кристаллография. Химики впервые кристаллизировали соединения, которые они хотели проанализировать. Это был вызов. После того, как испытания кристаллов пенициллина провели две разные компании, Ходжкин пустила рентгеновские волны через кристаллы и позволила радиации «проникнуть в исследуемый объект». При взаимодействии Х-лучей с электронами исследуемого объекта, лучи становились немного дифрагированными. Это привело к появлению четкого рисунка из точек на фотопленке. Проанализировав положение и яркость этих точек и выполнив множество расчетов, Ходжкин точно определила, как располагаются атомы в молекуле пенициллина.

Несколько лет спустя она использовала эту же технологию при выявлении структуры витамина В12. Она получила Нобелевскую премию по химии в 1964 году, честь, которой не удостоилась больше ни одна другая женщина.

Возникновение жизни

В 1929 году биохимики Джон Холдейн (John Haldane) и Александр Опарин независимо друг от друга предположили, что в ранней атмосфере Земли отсутствовал свободный кислород. В тех суровых условиях, они предположили, органические соединения могли формироваться из простых молекул, получая серьезный заряд энергии, будь то ультрафиолетовое излучение или яркий свет. Холдейн также добавил, что океаны, вероятно, были первыми источниками этих органических соединений.

Американские химики Гарольд Юри (Harold Urey) и Стэнли Миллер (Stanley Miller) решили проверить гипотезы Опарина и Холдейна в 1953 году. Им удалось воссоздать раннюю атмосферу Земли путем тщательной работы над контролируемой, закрытой системой. Роль океана играла колба с нагретой водой. После того, как водяной пар поднимался и собирался в другой емкости, Юрии и Миллер добавляли водород, метан и аммиак для того, чтобы сымитировать безкислородную атмосферу. Затем в колбе образовывались искры, представляющие свет в смеси газов. Наконец, конденсатор охлаждал газы в жидкости, которую они затем брали на анализ.

Спустя неделю, Юрии и Миллер получили удивительные результаты: в охлажденной жидкости в изобилии присутствовали органические соединения. В частности, Миллер обнаружил несколько аминокислот, в том числе глицин, аланин и глутаминовую кислоту. Аминокислоты – это строительные элементы белков, которые сами являются ключевыми компонентами и клеточных структур и клеточных ферментов, ответственных за функционирование важных химичексих реакций. Юри и Миллер пришли к выводу, что органические молекулы вполне могли выжить в безкислородной среде, что, в свою очередь, не заставило ждать появление простейших организмов.

Создание света

Когда в 19 веке появился свет, он так и остался загадкой, которая вдохновляла на проведение многих увлекательных экспериментов. К примеру, "двухщелевый эксперимент" Томаса Юнга (Thomas Young), который показал, как ведут себя световые волны, но не частицы. Но тогда еще не знали, как быстро свет путешествует.

В 1878 году физик А.А.Майкельсон (A.A. Michelson) провел эксперимент для того, чтобы рассчитать скорость света и доказать, что это конечная, измеряемая величина. Вот что он сделал:

1. Во-первых, он разместил два зеркала далеко друг от друга на разных сторонах дамбы возле университетского городка, расположив их так, что падающий свет отражался от одного зеркала и возвращался назад. Он измерил расстояние между зеркалами и обнаружил, что оно равнялось 605, 4029 метров.

3. При помощи линз он сфокусировал луч света на неподвижном зеркале. Когда луч света касался неподвижного зеркала, он отскакивал и отражался во вращающемся зеркале, возле которого Майкельсон разместил специальный экран. В связи с тем, что второе зеркало вращалось, траектория возвращения светового пучка незначительно изменилась. Когда Майкельсон измерил эти отклонения, он получил цифру 133 мм.

4. Используя полученные данные, ему удалось измерить скорость света, равную 186380 миль в секунду (299 949 530 километра). Допустимое значение для скорости света на сегодняшний день составляет 299 792 458 км в секунду. Измерения Майкельсона показали на удивление точный результат. Более того, в распоряжении ученых сейчас находятся более точные представления о свете и основ, на которых строятся теория квантовой механики и теория относительности.

Открытие радиации

1897 год был очень важным для Марии Кюри. Родился ее первый ребенок, а спустя всего несколько недель после его рождения она отправилась искать тему для докторской диссертации. В конце концов, она решила изучать "урановые лучи", впервые описанные Анри Беккерелем (Henri Becquerel). Беккерель открыл эти лучи случайно, когда он оставил соли урана, завернув их в непрозрачный материал вместе с фотопластинками в темной комнате, а вернувшись, обнаружил, что фотопластинки полностью засвечены. Мари Кюри выбрала для изучения эти таинственные лучи для того, чтобы выявить и другие элементы, действующие подобным образом.

Уже на раннем этапе изучения Кюри поняла, что торий вырабатывает такие же лучи, как и уран. Она начала маркировать эти уникальные элементы, как "радиоактивные" и быстро осознала, что сила радиации, вырабатываемая ураном и торием, зависит от количества тория и урана. В конце концов, ей удастся доказать, что лучи – это свойства атомов радиоактивного элемента. Само по себе это было революционное открытие, но Кюри это остановило.

Она обнаружила, что настуран (уранинит) более радиоактивен, чем уран, это натолкнуло ее на мысль, что наверняка в естественных минералах существует неизвестный ей элемент. Ее муж Пьер присоединился к исследованиям, и они систематически уменьшали количества настурана до тех пор, пока не обнаружили новый изолированный элемент. Они назвали его полонием, в честь родины Марии Польши. Вскоре после этого, они обнаружили другой радиоактивный элемент, который они назвали радием, от латинского "луч". Кюри завоевала две Нобелевские премии за свою работу.

Собачьи дни

Знаете ли вы, что Иван Павлов, российский физиолог и химик, а также автор эксперимента по выработке у собак слюноотделения и прививания им условного рефлекса, совсем не был заинтересован в психологии или поведении? Его интересовали темы пищеварения и кровообращения. На самом деле, он изучал систему пищеварения собак, когда открыл то, что сегодня нам известно, как "условные рефлексы".

В частности, он пытался понять наличие взаимосвязи между слюноотделением и работой желудка. Незадолго до этого, Павлов уже отметил, что желудок не начинает переваривать пищу без слюноотделения, которое происходит в первую очередь. Другими словами, рефлексы в вегетативной нервной системе тесно связывают друг с другом эти два процесса. Далее Павлов решил узнать, смогут ли внешние раздражители повлиять на пищеварение аналогичным образом. Чтобы это проверить, он начал во время приема пищи собакой включать и выключать свет, тикать метрономом и сделал слышимым звучание зуммера. В отсутствии этих раздражителей, у собак происходило слюноотделение только тогда, когда они видели и ели пищу. Но спустя некоторое время, у них начиналось слюноотделение при стимуляции звуком и светом, даже если им в это время не давали еды. Павлов также обнаружил, что этот тип условного рефлекса умирает, если стимул слишком часто "неправильно" использовать. К примеру, если звуковой сигнал собака слышит часто, но при этом не получает еды, то через какое-то время, она перестает реагировать на звук слюноотделением.

Павлов опубликовал полученные результаты в 1903 году. Год спустя он получил Нобелевскую премию в области медицины, причем не за свою работу по условным рефлексам, а "в знак признания его работ по физиологии пищеварения, благодаря которым знания о жизненно-важных аспектах были преобразованы и расширены".

Эксперименты Стэнли Милграма (Stanley Milgram), которые он проводил в 1960-х годах, и по сей день квалифицируются как одни из самых известных и противоречивых научных экспериментов. Милграм хотел выяснить, как далеко сможет зайти обычный человек в причинении боли другому человеку под давлением авторитета. Вот что он сделал:

1. Милграм набрал добровольцев, обычных людей, которые должны были по приказу причинить другим добровольцам-актерам некоторую боль. Экспериментатор играл роль авторитета, который на время исследования постоянно присутствовал в помещении.

2. Авторитет перед началом каждого испытания продемонстрировал ничего не подозревавшим добровольцам, как пользоваться шок – аппаратом, который мог поражать человека разрядом в 15-450 вольт (повышенный уровень опасности).

3. Далее ученый отметил, что они должны протестировать, как шоковое потрясение может улучшить запоминание слов при помощи ассоциаций. Он поручил добровольцам в процессе эксперимента "награждать" добровольцев-актеров шоковыми ударами за неправильные ответы. Чем больше было неправильных ответов, тем выше уровень напряжения на аппарате. Причем, стоит отметить, что аппарат был сделан на высшем уровне: над каждым выключателем было написано соответствующее ему напряжение, от "слабого удара" до "труднопереносимого удара", прибор был оснащен множеством панелей со стрелочными вольтметрами. То есть усомниться в подлинности эксперимента у испытуемых не было возможности, причем исследование было построено так, что на каждый верный ответ было три ошибочных и авторитет говорил добровольцу каким "ударом" наказать "неспособного ученика".

4. "Учащиеся" кричали, когда получали шоковые удары. После того, как сила удара превышала 150 вольт, они требовали освобождения. При этом, авторитет призывал добровольцев продолжать эксперимент, не обращая внимания на требования "учащихся".

5. Некоторые участники эксперимента пожелали его покинуть после достижения наказания в 150 вольт, но большинство продолжали, пока не достигли максимального шокового уровня в 450 вольт.

По окончанию экспериментов, многие высказывались относительно неэтичности данного исследования, но полученные результаты были впечатляющими. Мильграм доказал, что обычные люди могут причинить боль невинному человеку просто потому, что получили такую команду от властного авторитета.