Средняя скорость химической реакции. Факторы, влияющие на скорость химических реакций

  • Дата: 26.09.2019

Скорость реакции определяется изменением молярной концентрации одного из реагирующих веществ:

V = ± ((С 2 - С 1) / (t 2 - t 1)) = ± (DС / Dt)

Где С 1 и С 2 - молярные концентрации веществ в моменты времени t 1 и t 2 соответственно (знак (+) - если скорость определяется по продукту реакции, знак (-) - по исходному веществу).

Реакции происходят при столкновении молекул реагирующих веществ. Ее скорость определяется количеством столкновений и вероятностью того, что они приведут к превращению. Число столкновений определяется концентрациями реагирующих веществ, а вероятность реакции - энергией сталкивающихся молекул.
Факторы, влияющие на скорость химических реакций.
1. Природа реагирующих веществ. Большую роль играет характер химических связей и строение молекул реагентов. Реакции протекают в направлении разрушения менее прочных связей и образования веществ с более прочными связями. Так, для разрыва связей в молекулах H 2 и N 2 требуются высокие энергии; такие молекулы мало реакционноспособны. Для разрыва связей в сильнополярных молекулах (HCl, H 2 O) требуется меньше энергии, и скорость реакции значительно выше. Реакции между ионами в растворах электролитов протекают практически мгновенно.
Примеры
Фтор с водородом реагирует со взрывом при комнатной температуре, бром с водородом взаимодействует медленно и при нагревании.
Оксид кальция вступает в реакцию с водой энергично, с выделением тепла; оксид меди - не реагирует.

2. Концентрация. С увеличением концентрации (числа частиц в единице объема) чаще происходят столкновения молекул реагирующих веществ - скорость реакции возрастает.
Закон действующих масс (К. Гульдберг, П.Вааге, 1867г.)
Скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ.

AA + bB + . . . ® . . .

  • [A] a [B] b . . .

Константа скорости реакции k зависит от природы реагирующих веществ, температуры и катализатора, но не зависит от значения концентраций реагентов.
Физический смысл константы скорости заключается в том, что она равна скорости реакции при единичных концентрациях реагирующих веществ.
Для гетерогенных реакций концентрация твердой фазы в выражение скорости реакции не входит.

3. Температура. При повышении температуры на каждые 10°C скорость реакции возрастает в 2-4 раза (Правило Вант-Гоффа). При увеличении температуры от t 1 до t 2 изменение скорости реакции можно рассчитать по формуле:



(t 2 - t 1) / 10
Vt 2 / Vt 1 = g

(где Vt 2 и Vt 1 - скорости реакции при температурах t 2 и t 1 соответственно; g- температурный коэффициент данной реакции).
Правило Вант-Гоффа применимо только в узком интервале температур. Более точным является уравнение Аррениуса:

  • e -Ea/RT

где
A - постоянная, зависящая от природы реагирующих веществ;
R - универсальная газовая постоянная ;

Ea - энергия активации, т.е. энергия, которой должны обладать сталкивающиеся молекулы, чтобы столкновение привело к химическому превращению.
Энергетическая диаграмма химической реакции.

Экзотермическая реакция Эндотермическая реакция

А - реагенты, В - активированный комплекс (переходное состояние), С - продукты.
Чем больше энергия активации Ea, тем сильнее возрастает скорость реакции при увеличении температуры.

4. Поверхность соприкосновения реагирующих веществ. Для гетерогенных систем (когда вещества находятся в разных агрегатных состояниях), чем больше поверхность соприкосновения, тем быстрее протекает реакция. Поверхность твердых веществ может быть увеличена путем их измельчения, а для растворимых веществ - путем их растворения.

5. Катализ. Вещества, которые участвуют в реакциях и увеличивают ее скорость, оставаясь к концу реакции неизменными, называются катализаторами . Механизм действия катализаторов связан с уменьшением энергии активации реакции за счет образования промежуточных соединений. При гомогенном катализе реагенты и катализатор составляют одну фазу (находятся в одном агрегатном состоянии), при гетерогенном катализе - разные фазы (находятся в различных агрегатных состояниях). Резко замедлить протекание нежелательных химических процессов в ряде случаев можно добавляя в реакционную среду ингибиторы (явление "отрицательного катализа ").

Химические реакции протекают с различными скоростями: с малой скоростью - при образовании сталактитов и сталагмитов, со средней скоростью - при варке пищи, мгновенно - при взрыве. Очень быстро проходят реакции в водных растворах.

Определение скорости хи­мической реакции, а также выяснение ее зависимости от условий проведения про­цесса - задача химической кинетики - науки о законо­мерностях протекания хими­ческих реакций во времени.

Если химические реакции происходят в однородной сре­де, например в растворе или в газовой фазе, то взаимодействие реагирующих веществ происходит во всем объеме. Такие реак­ции называют гомогенными .

(v гомог) определя­ется как изменением количества вещества в еди­ницу времени в единице объема:

где Δn - изменение числа молей одного вещества (чаще всего исходного, но может быть и продукта реакции); Δt - интервал времени (с, мин); V - объем газа или раствора (л).

Поскольку отношение количества вещества к объему представляет собой молярную концентра­цию С, то

Таким образом, скорость гомогенной реакции определяется как изменение концентрации одного из веществ в единицу времени:

если объем системы не меняется.

Если реакция идет между веществами, находя­щимися в разных агрегатных состояниях (напри­мер, между твердым веществом и газом или жид­костью), или между веществами, неспособными образовывать гомогенную среду (например, между несмешивающимися жидкостями), то она прохо­дит только на поверхности соприкосновения ве­ществ. Такие реакции называют гетерогенными .

Определяется как изменение количества вещества в единицу вре­мени на единице поверхности.

где S - площадь поверхности соприкосновения ве­ществ (м 2 , см 2).

Изменение количества ве­щества, по которому опреде­ляют скорость реакции, - это внешний фактор, наблюда­емый исследователем. По сути, все процессы осуществляются на микроуровне. Очевидно, для того, чтобы какие-то частицы прореагировали, они прежде всего должны столкнуться, причем столкнуться эффективно: не раз­лететься, как мячики, в разные стороны, а так, чтобы в частицах разрушились или ослабли «старые связи» и смогли образоваться «новые», а для этого частицы должны обладать достаточной энергией.

Расчетные данные показывают, что, например, в газах столкновения молекул при атмосферно давлении исчисляются миллиардами за 1 секунду, то есть все реакции должны были бы идти мгновен­но. Но это не так. Оказывается, что лишь очень не­большая доля молекул обладает необходимой энер­гией, приводящей к эффективному соударению.

Минимальный избыток энергии, который долж­на иметь частица (или пара частиц), чтобы произо­шло эффективное соударение, называют энергией активации E a .

Таким образом, на пути всех частиц, вступаю­щих в реакцию, имеется энергетический барьер, равный энергии активации E a . Когда он малень­кий, то находится много частиц, которые могут его преодолеть, и скорость реакции велика. В против­ном случае требуется «толчок». Когда вы подноси­те спичку, чтобы зажечь спиртовку, вы сообщаете дополнительную энергию E a , необходимую для эф­фективного соударения молекул спирта с молеку­лами кислорода (преодоление барьера).

Скорость химической реакции зависит от мно­гих факторов. Основными из них являются: при­рода и концентрация реагирующих веществ, дав­ление (в реакциях с участием газов), температура, действие катализаторов и поверхность реагирую­щих веществ в случае гетерогенных реакций .

Температура

При повышении температуры в большинстве случаев скорость химической реакции значительно возрастает. В XIX в. голландский химик Я. X. Вант- Гофф сформулировал правило:

Повышение темпе­ратуры на каждые 10 °С приводит к увеличению скорости реакции в 2-4 раза (эту величину назы­вают температурным коэффициентом реакции).

При повышении темпе­ратуры средняя скорость молекул, их энергия, число столкновений увеличиваются незначительно, зато резко по­вышается доля «активных» молекул, участвующих в эф­фективных соударениях, пре­одолевающих энергетичес­кий барьер реакции. Математически эта зависимость выражается со­отношением:

где v t 1 и v t 2 - скорости реакции соответственно при конечной t 2 и начальной t 1 температурах, а γ - температурный коэффициент скорости реакции, который показывает, во сколько раз увеличивается скорость реакции с повышением температуры на каждые 10 °С.

Однако для увеличения скорости реакции повы­шение температуры не всегда применимо, т. к. ис­ходные вещества могут начать разлагаться, могут испаряться растворители или сами вещества и т. д.

Эндотермические и экзотермические реакции

Реакция метана с кислородом воздуха, как известно, сопровождается выделением большого количества тепла. Поэтому ее используют в быту для приготовления пищи, нагревания воды и отопления. Природный газ, поступающий в дома по трубам, на 98% состоит именно из метана. Реакция оксида кальция (СаО) с водой тоже сопровождается выделением большого количества тепла.

О чем могут говорить эти факты? При образовании новых химических связей в продуктах реакции выделяется больше энергии, чем требуется на разрыв химических связей в реагентах. Избыток энергии выделяется в виде тепла, а иногда и света.

СН 4 + 2О 2 = СО 2 + 2Н 2 О + Q (энергия (свет, тепло));

СаО + Н 2 О = Са(ОН) 2 + Q (энергия (тепло)).

Такие реакции должны протекать легко (как легко катится под гору камень).

Реакции, в которых энергия выделяется, называются ЭКЗОТЕРМИЧЕСКИМИ (от латинского «экзо» – наружу).

Например, многие окислительно-восстановительные реакции являются экзотермическими. Одна из таких красивых реакций — внутримолекулярное окисление-восстановление, протекающее внутри одной и той же соли — дихромата аммония (NH 4) 2 Cr 2 O 7:

(NH 4) 2 Cr 2 O 7 = N 2 + Cr 2 O 3 + 4 H 2 O + Q (энергия).

Другое дело – обратные реакции. Они аналогичны закатыванию камня в гору. Получить метан из CO 2 и воды до сих пор не удается, а для получения негашеной извести СаО из гидроксида кальция Са(ОН) 2 требуются сильное нагревание. Такая реакция идет только при постоянном притоке энергии извне:

Са(ОН) 2 = СаО + Н 2 О — Q (энергия (тепло))

Это говорит о том, что разрыв химических связей в Ca(OH) 2 требует большей энергии, чем может выделиться при образовании новых химических связей в молекулах CaO и H 2 O.

Реакции, в которых энергия поглощается, называются ЭНДОТЕРМИЧЕСКИМИ (от «эндо» – внутрь).

Концентрация реагирующих веществ

Изменение давления при участии в реакции га­зообразных веществ также приводит к изменению концентрации этих веществ.

Чтобы осуществилось химическое взаимодей­ствие между частицами, они должны эффективно столкнуться. Чем больше концентрация реагирую­щих веществ, тем больше столкновений и, соответ­ственно, выше скорость реакции. Например, в чи­стом кислороде ацетилен сгорает очень быстро. При этом развивается температу­ра, достаточная для плавле­ния металла. На основе боль­шого экспериментального материала в 1867 г. норвеж­цами К. Гульденбергом и П. Вааге и независимо от них в 1865 г. русским ученым Н. И. Бекетовым был сформулирован основной закон химической кинетики, устанавливающий зависимость скорости реакции от концентрации реагирующих веществ.

Скорость химической реакции пропорциональ­на произведению концентраций реагирующих ве­ществ, взятых в степенях, равных их коэффици­ентам в уравнении реакции.

Этот закон называют также законом действую­щих масс.

Для реакции А + В = D этот закон выразится так:

Для реакции 2А + В = D этот закон выразится так:

Здесь С А, С В - концентрации веществ А и В (моль/л); k 1 и k 2 - коэффициенты пропорцио­нальности, называемые константами скорости ре­акции.

Физический смысл константы скорости реак­ции нетрудно установить - она численно равна скорости реакции, в которой концентрации реаги­рующих веществ равны 1 моль/л или их произ­ведение равно единице. В таком случае ясно, что константа скорости реакции зависит только от тем­пературы и не зависит от концентрации веществ.

Закон действующих масс не учитывает кон­центрации реагирующих веществ, находящихся в твердом состоянии , т. к. они реагируют на по­верхности и их концентрации обычно являются постоянными.

Например, для реакции горения угля выражение скорости реакции должно быть запи­сано так:

т. е. скорость реакции пропорциональна только концентрации кислорода.

Если же уравнение реакции описывает лишь суммарную химическую реакцию, проходящую в несколько стадий, то скорость такой реакции мо­жет сложным образом зависеть от концентраций исходных веществ. Эта зависимость определяется экспериментально или теоретически на основании предполагаемого механизма реакции.

Действие катализаторов

Можно увеличить скорость реакции, используя специальные вещества, которые изменяют меха­низм реакции и направляют ее по энергетически более выгодному пути с меньшей энергией актива­ции. Их называют катализаторами (от лат. katalysis - разрушение).

Катализатор действует как опытный провод­ник, направляющий группу туристов не через вы­сокий перевал в горах (его преодоление требует много сил и времени и не всем до­ступно), а по известным ему обходным тропам, по кото­рым можно преодолеть гору значительно легче и быстрее.

Правда, по обходному пу­ти можно попасть не совсем туда, куда ведет главный перевал. Но иногда именно это и требуется! Именно так действуют катализаторы, ко­торые называют селективны­ми. Ясно, что нет необходи­мости сжигать аммиак и азот, зато оксид азота (II) находит использование в производстве азотной кислоты.

Катализаторы - это вещества, участвующие в химической реакции и изменяющие ее скорость или направление, но по окончании реакции остаю­щиеся неизменными количественно и качественно.

Изменение скорости химической реакции или ее направления с помощью катализатора называ­ют катализом. Катализаторы широко использу­ют в различных отраслях промышленности и на транспорте (каталитические преобразователи, пре­вращающие оксиды азота выхлопных газов авто­мобиля в безвредный азот).

Различают два вида катализа.

Гомогенный катализ , при котором и катализа­тор, и реагирующие вещества находятся в одном агрегатном состоянии (фазе).

Гетерогенный катализ , при котором катализа­тор и реагирующие вещества находятся в разных фазах. Например, разложение пероксида водорода в присутствии твердого катализатора оксида мар­ганца (IV):

Сам катализатор не рас­ходуется в результате реак­ции, но если на его поверх­ности адсорбируются другие вещества (их называют каталитическими ядами), то поверхность становится не­работоспособной, требуется регенерация катализатора. Поэтому перед проведени­ем каталитической реакции тщательно очищают исход­ные вещества.

Например, при производстве серной кислоты контактным способом используют твердый катали­затор - оксид ванадия (V) V 2 O 5:

При производстве метанола используют твер­дый «цинкохромовый» катализатор (8ZnO Cr 2 O 3 х CrO 3):

Очень эффективно работают биологические ка­тализаторы - ферменты. По химической природе это белки. Благодаря им в живых организмах при невысокой температуре с большой скоростью про­текают сложные химические реакции.

Известны другие интересные вещества - ин­гибиторы (от лат. inhibere - задерживать). Они с высокой скоростью реагируют с активными ча­стицами с образованием малоактивных соедине­ний. В результате реакция резко замедляется и за­тем прекращается. Ингибиторы часто специально добавляют в разные вещества, чтобы предотвратить нежелательные процессы.

Например, с помощью ингибиторов стабилизи­руют растворы пероксида водорода.

Природа реагирующих веществ (их состав, строение)

Значение энергии активации является тем факто­ром, посредством которого сказывается влияние при­роды реагирующих веществ на скорость реакции.

Если энергия активации мала (< 40 кДж/моль), то это означает, что значительная часть столкнове­ний между частицами реагирующих веществ при­водит к их взаимодействию, и скорость такой ре­акции очень большая. Все реакции ионного обмена протекают практически мгновенно, ибо в этих ре­акциях участвуют разноименно заряженные ионы, и энергия активации в данных случаях ничтожно мала.

Если энергия активации велика (> 120 кДж/моль), то это означает, что лишь ничтожная часть стол­кновений между взаимодействующими частицами приводит к реакции. Скорость такой реакции поэтому очень мала. Например, протекание реакции синтеза аммиака при обычной температуре заме­тить практически невозможно.

Если энергии активации химических ре­акций имеют промежуточные значения (40­120 кДж/моль), то скорости таких реакций будут средними. К таким реакциям можно отнести взаи­модействие натрия с водой или этиловым спиртом, обесцвечивание бромной воды этиленом, взаимо­действие цинка с соляной кислотой и др.

Поверхность соприкосновения реагирующих веществ

Скорость реакций, иду­щих на поверхности веществ, т. е. гетерогенных, зависит при прочих равных условиях от свойств этой поверхности. Известно, что растер­тый в порошок мел гораздо быстрее растворяется в соля­ной кислоте, чем равный по массе кусочек мела.

Увеличение скорости реакции объясняется в первую очередь увеличением поверхности со­прикосновения исходных веществ , а также рядом других причин, например, нарушением структуры «правильной» кристаллической решетки. Это при­водит к тому, что частицы на поверхности обра­зующихся микрокристаллов значительно реакци­онноспособнее, чем те же частицы на «гладкой» поверхности.

В промышленности для проведения гетероген­ных реакций используют «кипящий слой», чтобы увеличить поверхность соприкосновения реагиру­ющих веществ, подвод исходных веществ и отвод продуктов. Например, при производстве серной кислоты с помощью «кипящего слоя» проводят об­жиг колчедана.

Справочный материал для прохождения тестирования:

Таблица Менделеева

Таблица растворимости

Скорость химической реакции зависит от следу­ющих факторов:

1) Природа реагирующих веществ.

2) Поверхность соприкосновения реагентов.

3) Концентрация реагирующих веществ.

4) Температура.

5) Присутствие катализаторов.

Скорость гетерогенных реакций зависит также от:

а) величины поверхности раздела фаз (с увеличением поверхности раздела фаз скорость гетерогенных реакций увеличивается);

б) скорости подвода реагирующих веществ к поверхно­сти раздела фаз и скорости отвода от нее продуктов реак­ции.

Факторы, влияющие на скорость химической реакции:

1. Природа реагентов. Большую роль играет харак­тер химических связей в соединениях, строение их молекул. Например, выделение водорода цинком из раствора хлороводородной кислоты происходит значительно быстрее, чем из раствора ук­сусной кислоты, так как полярность связи Н-С1 больше, чем связи О-Н в молекуле СН 3 СООН, иначе говоря, из-за того, что НСl - сильный электролит, а СН 3 СООН - слабый элект­ролит в водном растворе.

2. Поверхность соприкосновения реагентов. Чем больше поверхность соприкосновения реагирующих веществ, тем бы­стрее протекает реакция. Поверхность твердых веществ мо­жет быть увеличена путем их измельчения, а для раствори­мых веществ - путем их растворения. Реакции в растворах протекают практически мгновенно.

3. Концентрация реагентов. Чтобы произошло взаимо­действие, частицы реагирующих веществ в гомогенной систе­ме должны столкнуться. При увеличении концентрации реагирующих веществ скорость реакций увеличивается. Это объясняется тем, что при увеличении количества вещества в единице объема уве­личивается число столкновений между частицами реагиру­ющих веществ. Число столкновений пропорциональ­но числу частиц реагирующих веществ в объеме реактора, т. е. их молярным концентрациям.

Количественно зависимость скорости реакции от кон­центрации реагирующих веществ выражается законом дей­ствующих масс (Гульдберг и Вааге, Норвегия, 1867 г.): скорость химической реакции пропорциональна произве­дению концентраций реагирующих веществ.

Для реакции:

aA + bB ↔ cC + dD

скорость реакции в соответствии с законом действующих масс равна:

υ = k· [A ] υ a · [B ] υ b , (9)

где [А] и [В] - концентрации исходных веществ;

k - кон­станта скорости реакции , которая равна скорости реакции при концентрациях реагирующих веществ [А] = [В] = 1 моль/л.

Константа скорости реакции зависит от при­роды реагирующих веществ, температуры, но не зависит от концентрации веществ.

Выражение (9) называется кинетическим урав­нением реакции. В кинетические уравнения входят концен­трации газообразных и растворенных веществ, но не вхо­дят концентрации твердых веществ:

2SO 2(г) + O 2(г) = 2SO 3(г) ; υ = 2 · [О 2 ];

СuО (тв.) + Н 2(г) = Сu (тв) + Н 2 О (г) ; υ = k· .

По кинетическим уравнениям можно рассчитывать, как изменяется скорость реакции при изменении концентрации реагирующих веществ.

Влияние катализатора.

5. Температура реакции. Теория активных соударений

Для того чтобы совершился элементарный акт химического взаи­модействия, реагирующие частицы должны столкнуться друг с другом. Однако не каждое столкновение приводит к химическому взаимо­действию. Химическое взаимодействие происходит в том случае, когда частицы при­ближаются на расстояния, при которых возможно перераспределение электронной плотности и возникновение новых химических связей. Взаимодействующие частицы должны обладать энергией, достаточной для преодоления сил отталкивания, возникающих между их электронными оболочками.

Переходное состояние - состояние системы, при котором уравнове­шены разрушение и создание связи. В переходном состоянии система находится в течение небольшого (10 -15 с) времени. Энергия, которую необходимо затратить, чтобы привести систему в переходное состояние, называется энергией активации. В многоступенчатых реакциях, которые включают в себя несколько переходных состояний, энергия активации соответствует наибольшему значению энергии. После преодоления переходного состояния молекулы вновь разлетаются с разрушением старых связей и образованием новых или с преобразованием исходных связей. Оба варианта возможны, так как происходят с высвобождением энергии. Существуют вещества, способные уменьшить энергию акти­вации для данной реакции.

Активные молекулы А 2 и В 2 при столкновении объединяются в про­межуточный активный комплекс А 2 ...В 2 с ослаблением, а затем и раз­рывом связей А-А и В-В и упрочнением связей А-В.

«Энергия активации» реакции образования НI (168 кДж/моль) значительно меньше, чем энергия, необходимая для полного разрыва связи в исходных молекулах Н 2 и I 2 (571 кДж/моль). Поэтому путь реакции через образование активного (активированного} комплекса энергетически более выгоден, чем путь через полный разрыв связей в исходных молекулах. Через образование промежуточных актив­ных комплексов происходит подавляющее большинство реакций. Положения теории активного комплекса разработаны Г. Эйрингом и М. Поляни в 30 годах XX в.

Энергия активации представляет собой избыток кинетической энер­гии частиц относительно средней энергии, необходимой для химиче­ского превращения сталкивающихся частиц. Реакции характеризуются различными величинами энергии активации (Е а). В большинстве случаев энергия активации химических реакций между нейтральными молекулами составляет от 80 до 240 кДж/моль. Для биохимических процессов значения Е а зачастую ниже - до 20 кДж/моль. Это объясня­йся тем, что абсолютное большинство биохимических процессов протекает через стадию фермент-субстратных комплексов. Энергетические барьеры ограничивают протекание реакции. Благодаря этому в принципе возможные реакции (при Q < 0) практически всегда не протекают или замедляются. Реакции с энергией активации выше 120 кДж/моль настолько медленны, что их протекание трудно заметить.

Для осуществления реакции молекулы при столкновении должны быть определенным образом ориентированы и обладать достаточной энергией. Вероятность надлежащей ориентации при столкновении характеризу­ют с помощью энтропии активации S a . Перераспределению электрон­ной плотности в активном комплексе благоприятствует условие, когда при столкновении молекулы А 2 и В 2 ориентированы, как это показано на рис. 3а, тогда как при ориентации, показанной на рис. 3б, вероятность реакции еще гораздо меньше - на рис. 3в.

Рис. 3. Благоприятная (а) и неблагоприятные (б, в) ориентации молекул А 2 и В 2 при столкновении

Уравнение, характеризующее зависимость скорости и реакции от тем­пературы, энергии активации и энтропии активации, имеет вид:

(10)

где k - константа скорости реакции;

А - в первом приближении общее число столкновений между молекулами за единицу времени (секунду) в единице объема;

е - основание натуральных лога­рифмов;

R - универсальная газовая постоянная;

Т - абсолютная температура;

Е а - энергия активации;

S a - изменение энтропии активации.

Уравнение (11) выведено Аррениусом в 1889 году. Предэкспоненциальный множитель А пропорционален общему числу соударений между молекулами в единицу времени. Его размерность совпадает с размерностью константы скорости и зависит от сум­марного порядка реакции.

Экспонента равна доле активных соударений от их общего числа, т.е. столкнувшиеся молекулы должны иметь достаточную энергию взаимодействия. Вероятность же их нужной ориента­ции в момент соударения пропорциональна .

При обсуждении закона действующих масс для скорости (9) специ­ально было оговорено, что константа скорости есть постоянная величи­на, не зависящая от концентраций реагентов. При этом предполагалось, что все химические превращения протекают при постоянной темпера­туре. Вместе с тем, быстрота химического превращения может существенно изменяться при понижении или повышении температуры. С точки зрения закона действующих масс это изменение скорости обусловлено температурной зависимостью константы скоро­сти, так как концентрации реагирующих веществ лишь незначительно меняются вследствие теплового расширения или сжатия жидкости.

Наиболее хорошо известным фактом является возрастание скоро­сти реакций с увеличением температуры. Такой тип температурной зависимости скорости называется нормальным (рис. 3 а). Этот тип зависимости характерен для всех простых реакций.

Рис. 3. Типы температурной зависимости скорости химических реакций: а - нормальная;

б - аномальная; в - ферментативная

Однако в настоящее время хорошо известны химические превра­щения, скорость которых падает с увеличением температуры, такой тип температурной зависимости скорости называется аномальным . В каче­стве примера можно привести газофазную реакцию азота (II) оксида с бромом (рис. 3 б).

Особый интерес для медиков представляет зависимость от тем­пературы скорости ферментативных реакций, т.е. реакций с участием ферментов. Практически все реакции, протекающие в организме, относятся к этому классу. Например, при разложении пероксида водорода в присутствии фермента каталазы скорость разложения зависит от температуры. В интервале 273-320 К температурная зависимость имеет нормальный характер. С увеличением температуры скорость возрастает, с уменьшением - падает. При подъеме температуры выше 320 К наблюдается резкое аномальное падение скорости разложения пероксида. Сходная картина имеет место и для других ферментативных реакций (рис. 3 в).

Из уравнения Аррениуса для k видно, что, поскольку Т входит в показатель степени, скорость химической реакции очень чувстви­тельна к изменению температуры. Зависимость скорости гомогенной реакции от температуры может быть выражена правилом Вант-Гоффа, согласно которому при увеличении температуры на каждые 10° скорость реакции возрастает в 2-4 раза; число, показывающее во сколько раз возрастает скорость данной реакции при повышении температуры на 10°, называется температурным коэффициентом ско­рости реакции - γ.

Это правило математически выражается следующей формулой:

(12)

где γ - температурный коэффициент, который показыва­ет, во сколько раз увеличивается скорость реакции при повышении температуры на 10 0 ; υ 1 – t 1 ; υ 2 – скорость реакции при температуре t 2 .

При повышении температуры в арифметической прогрессии скорость возрастает в геометрической.

Например, если γ = 2,9, то при возрастании температуры на 100° скорость реакции увеличивается в 2,9 10 раз, т.е. в 40 тыс. раз. Отклонения от этого правила составляют биохимические реакции, скорость которых увеличивается в десятки раз при незначительном повышении температуры. Это правило справедливо лишь в грубом приближении. Реакции, в которых участвуют крупные молекулы (белка), характеризуются большим температурным коэффициентом. Скорость денатурации белка (яичного альбумина) возрастает в 50 раз при повышении температуры на 10 °С. После достижения некоторого максимума (50-60 °С) скорость реакции резко понижается в резуль­тате термоденатурации белка.

Для многих химических реакций закон действующих масс для ско­рости неизвестен. В таких случаях для описания температурной зави­симости скорости превращения может применяться выражение:

Предэкспонента А с не зависит от температуры, однако зависит от концентрации. Единицей измерения является моль/л∙с.

Теоретическая зависимость позволяет заранее рассчитывать ско­рость при любой температуре, если известны энергия активации и предэкспонента. Таким образом, прогнозируется влияние температуры на быстроту протекания химического превращения.

Сложные реакции

Принцип независимости. Все рассмотренное выше отно­силось к сравнительно простым реакциям, но в химии часто встречаются так называемые сложные реакции. К таким реакциям относятся рассматриваемые ниже. При выводе кинетических уравнений для этих реакций ис­пользуют принцип независимости: если в системе протекает несколько реакций, то каждая из них независима от других и ее ско­рость пропорциональна произведению концентраций ее реагентов.

Параллельные реакции - это реакции, идущие од­новременно в нескольких направлениях.

Термический распад хлората калия протекает одновременно по двум реакциям:

Последовательные реакции - это реакции, которые протекают в несколько стадий. Таких реакций в химии большинство.

.

Сопряженные реакции. Если в системе протекают не­сколько реакций и протекание одной из них невозможно без другой, то эти реакции называются сопряженными , а само явление - индукцией .

2HI + Н 2 СrО 4 → I 2 + Сr 2 О 3 + Н 2 О.

Эта реакция в обычных условиях практически не наблюдает­ся, но если в систему добавить FеО, то происходит реакция:

FеО + Н 2 СrО 4 → Fе 2 О 3 + Сr 2 O 3 + Н 2 О

и одновременно с ней идет первая реакция. Причиной этого явля­ется образование во второй реакции промежуточных продуктов, участвующих в первой реакции:

FеО 2 + Н 2 СrО 4 → Сr 2 О 3 + Fе 5+ ;

HI + Fе 5+ → Fе 2 О 3 + I 2 + Н 2 О.

Химическая индукция - явление, при котором одна химиче­ская реакция (вторичная) зависит от другой (первичной).

А + В - первичная реакция,

А + С - вторичная реак­ция,

то А - активатор, В - индуктор, С - акцептор.

При химической индукции, в отличие от катализa, концентрации всех участников реакции уменьшаются.

Фактор индукции определяется из следующего уравнения:

.

В зависимости от величины фактора индукции возможны сле­дующие случаи.

I > 0 - затухающий процесс. Скорость реакции снижается со временем.

I < 0 - ускоряющийся процесс. Скорость реакции увеличи­вается со временем.

Явление индукции важно тем, что в ряде случаев энергия первичной реакции может скомпенсировать затраты энергии во вторичной реакции. По этой причине, например, оказывается тер­модинамически возможным синтез белков путем поликонденса­ции аминокислот.

Цепные реакции. Если химическая реакция протека­ет с образованием активных частиц (ионов, радикалов), которые, вступая в последующие реакции, вызывают появление новых активных частиц, то такая последова­тельность реакций называется цепной реакцией .

Образование свободных радикалов связано с затратой энер­гии на разрыв связей в молекуле. Эта энергия может быть сооб­щена молекулам путем освещения, электрического разряда, на­гревания, облучения нейтронами, α- и β-частицами. Для проведе­ния цепных реакций при невысоких температурах в реагирующую смесь вводят инициаторы - вещества, легко образующие радика­лы: пары натрия, органические пероксиды, иод и т. д.

Реакция образования хлороводорода из простых соединений, активируемая светом.

Суммарная реакция:

Н 2 + С1 2 2НС1.

Отдельные стадии:

Сl 2 2Сl∙ фотоактивация хлора (инициирование)

Сl∙ + Н 2 = НСl + Н∙ развитие цепи

Н∙ + Сl 2 = НСl + Сl∙ и т. д.

Н∙ + Сl∙ = НСl обрыв цепи

Здесь Н∙ и Сl∙ - активные частицы (радикалы).

В этом механизме реакции можно выделить три группы эле­ментарных стадий. Первая представляет собой фотохимическую реакцию зарождения цепи . Молекулы хлора, поглотив квант света, диссоциируют на свободные атомы, обладающие высокой реакционной способностью. Таким образом, при зарождении це­пи происходит образование свободных атомов или радикалов из валентно-насыщенных молекул. Процесс зарождения цепи назы­вают также инициированием . Атомы хлора, обладая непарными электронами, способны реагировать с молекулярным водородом, образуя молекулы хлороводорода и атомарного водорода. Ато­марный водород, в свою очередь, вступает во взаимодействие с молекулой хлора, в результате чего снова образуется молекула хлороводорода и атомарный хлор и т. д.

Эти процессы, характеризующиеся повторением одних и тех же элементарных стадий (звеньев) и идущие с сохранением свободных радикалов, приводят к расходованию исходных ве­ществ и образованию продуктов реакции. Такие группы реакций называют реакциями развития (или продолжения) цепи.

Стадия цепной реакции, при которой происходит гибель сво­бодных радикалов, называется обрывом цепи . Обрыв цепи может наступить в результате рекомби­нации свободных радикалов, если выделяющаяся при этом энергия может быть отдана какому-либо третьему телу: стенке сосуда или молекулам инертных примесей (стадии 4, 5). Вот почему скорость цепных реакций очень чувствительна к наличию приме­сей, к форме и размерам сосуда, особенно при малых давлениях.

Число элементарных звеньев от момента зарождения цепи до ее обрыва называют длиной цепи. В рассматриваемом примере на каждый квант света образуется до 10 5 молекул НСl.

Цепные реакции, в ходе которых не происходит «умножения» числа свободных радикалов, называются неразветвленными или простыми цепными реакциями . В каждой элементарной стадии неразветвленного цепного процесса один радикал «рождает» одну молекулу продукта реакции и только один новый радикал (рис. 41).

Другие примеры простых цепных реакций: а) хлорирование парафиновых углеводородов Сl∙ + СН 4 → СН 3 ∙ + НС1; СН 3 ∙ + Сl - → СН 3 Сl + Сl∙ и т. д.; б) реакции радикальной полимеризации, например, полимеризация винилацетата в присутствии перекиси бензоила, легко распадающегося на радикалы; в) взаимодейст­вие водорода с бромом, протекающее по механизму, аналогично­му при реакции хлора с водородом, только с меньшей длиной цепи вследствие ее эндотермичности.

Если в результате акта роста появляются две или более активных частиц, то эта цепная реакция является разветвленной.

В 1925 г. Н. Н. Семенов и его сотрудники открыли реакции, содержащие элементарные стадии, в результате которых возни­кают не одна, а несколько химически активных частиц - атомов, или радикалов. Появление нескольких новых свободных радика­лов приводит к появлению не­скольких новых цепей, т.е. одна цепь разветвляется. Такие про­цессы называют разветвленными цепными реакциями (рис. 42).

Примером сильно разветвлен­ного цепного процесса является реакция окисления водорода при низких давлениях и температуре около 900°С. Механизм реакции можно записать так.

1. H 2 + O 2 OH∙ + OH∙ зарождение цепи

2. ОН∙ + Н 2 → Н 2 О + Н∙ развитие цепи

3. Н∙ + О 2 → ОН∙ + О: разветвление цепи

4. О: + Н 2 → ОН∙ +Н∙

5. ОН∙ +Н 2 → Н 2 О + Н∙ продолжение цепи

6. Н∙ + Н∙ + стенка → Н 2 обрыв цепи на стенке сосуда

7. Н∙ + О 2 + М → НО 2 ∙ + М обрыв цепи в объеме.

М - инертная молекула. Радикал НО 2 ∙, образующийся при трой­ном соударении, малоактивен и не может продолжать цепь.

На первой стадии процесса образуются радикалы гидроксила, которые обеспечивают развитие простой цепи. В третьей же ста­дии в результате взаимодействия с исходной молекулой одного радикала образуются два радикала, причем атом кислорода об­ладает двумя свободными валентностями. Это и обеспечивает разветвление цепи.

В результате разветвления цепи скорость реакции в началь­ный период времени стремительно нарастает, и процесс заканчи­вается цепным воспламенением-взрывом. Однако разветвлен­ные цепные реакции заканчиваются взрывом только в том случае, когда скорость разветвления больше скорости обрыва цепей. В противном случае наблюдается медленное течение процесса.

При изменении условий протекания реакции (изменение дав­ления, температуры, состава смеси, размера и состояния стенок реакционного сосуда и т. д.) может произойти переход от мед­ленного течения реакции к взрыву и наоборот. Таким образом, з цепных реакциях существуют предельные (критические) со­стояния, при которых происходит цепное воспламенение, от кото­рого следует отличать тепловое воспламенение, возникающее в экзотермических реакциях в результате все увеличивающегося разогревания реагируемой смеси при слабом теплоотводе.

По разветвленному цепному механизму происходит окисле-кие паров серы, фосфора, оксида углерода (II), сероуглерода и т. д.

Современная теория цепных процессов разработана лауреа­тами Нобелевской премии (1956) советским академиком Н. Н. Семеновым и английским ученым Хиншельвудом.

Цепные реакции следует отличать от реакций каталитических, хотя последние носят и циклический характер. Самое существенное отличие цепных реакций от каталитических заклю­чается в том, что при цепном механизме возможно течение реак­ции в направлении повышения энергии системы за счет само­произвольно протекающих. Катализатор же термодинамически невозможную реакцию не вызывает. Кроме того, в каталитиче­ских реакциях отсутствуют такие стадии процесса, как зарожде­ние и обрыв цепи.

Реакции полимеризации. Частный случай цепной ре­акции - реакция полимеризации.

Полимеризацией называется процесс, при котором ре­акция активных частиц (радикалов, ионов) с низкомоле­кулярными соединениями (мономерами) сопровождает­ся последовательным присоединением последних с уве­личением длины материальной цепи (длины молекулы), т. е. с образованием полимера.

Мономерами являются органические соединения, как правило, содержащие в составе молекулы непредельные (двойные, тройные) связи.

Основные стадии процесса полимеризации:

1. Инициирование (под действием света, нагревания и т. д.):

А: А А" + А" - гомолитический распад с об­разованием радикалов (активные валентноненасыщенные частицы).

А: В А - + В + - гетеролитический распад с образованием ионов.

2. Рост цепи: А" + М АМ"

(или А - + М АМ", или В + + М ВМ +).

3. Обрыв цепи: АМ" + АМ" → полимер

(или АМ" + В + → полимер, ВМ + + А" → полимер).

Скорость цепного процесса все­гда больше, чем нецепного.

Понятие «скорость» довольно часто встречается в литературе. Из физики известно, что чем большее расстояние преодолеет материальное тело (человек, поезд, космический корабль) за определённый отрезок времени, тем выше скорость этого тела.

А как измерить скорость химической реакции, которая никуда «не идёт» и никакое расстояние не преодолевает? Для того чтобы ответить на этот вопрос, следует выяснить, а что всегда меняется в любой химической реакции? Поскольку любая химическая реакция - это процесс изменения вещества, то исходное вещество в ней исчезает, превращаясь в продукты реакции. Таким образом, в ходе химической реакции всегда изменяется количество вещества, уменьшается число частиц исходных веществ, а значит, и его концентрация (С) .

Задание ЕГЭ. Скорость химической реакции пропорциональна изменению:

  1. концентрации вещества в единицу времени;
  2. количеству вещества в единице объёма;
  3. массы вещества в единице объёма;
  4. объёму вещества в ходе реакции.

А теперь сравните свой ответ с правильным:

скорость химической реакции равна изменению концентрации реагирующего вещества в единицу времени

где С 1 и С 0 - концентрации реагирующих веществ, конечная и начальная, соответственно; t 1 и t 2 - время эксперимента, конечный и начальный отрезок времени, соответственно.

Вопрос. Как вы считаете, какая величина больше: С 1 или С 0 ? t 1 или t 0 ?

Поскольку реагирующие вещества всегда расходуются в данной реакции, то

Таким образом, отношение этих величин всегда отрицательно, а скорость не может быть величиной отрицательной. Поэтому в формуле появляется знак «минус», который одновременно говорит о том, что скорость любой реакции с течением времени (при неизменных условиях) всегда уменьшается .

Итак, скорость химической реакции равна:

Возникает вопрос, в каких единицах следует измерять концентрацию реагирующих веществ (С) и почему? Для того чтобы ответить на него, нужно понять, какое условие является главным для протекания любой химической реакции.

Для того чтобы частицы прореагировали, необходимо, чтобы они, как минимум, столкнулись. Поэтому чем выше число частиц* (число молей) в единице объёма, тем чаще они сталкиваются, тем выше вероятность химической реакции .

* О том, что такое «моль», читай в уроке 29.1.

Поэтому при измерении скоростей химических процессов используют молярную концентрацию веществ в реагирующих смесях.

Молярная концентрация вещества показывает, сколько молей его содержится в 1 литре раствора

Итак, чем больше молярная концентрация реагирующих веществ, тем больше частиц в единице объёма, тем чаще они сталкиваются, тем выше (при прочих равных условиях) скорость химической реакции. Поэтому основным законом химической кинетики (это наука о скорости химических реакций) является закон действующих масс .

Скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ.

Для реакции типа А + В →… математически этот закон можно выразить так:

Если реакция более сложная, например, 2A + B → или, что тоже самое А + А + В → …, то

Таким образом, в уравнении скорости появился показатель степени « два » , который соответствует коэффициенту 2 в уравнении реакции. Для более сложных уравнений большие показатели степеней, как правило, не используют. Это связано с тем, что вероятность одновременного столкновения, скажем, трёх молекул А и двух молекул В крайне мала. Поэтому многие реакции протекают в несколько стадий, в ходе которых сталкивается не более трёх частиц, и каждая стадия процесса протекает с определённой скоростью. Эту скорость и кинетическое уравнение скорости для неё определяют экспериментально.

Вышеприведённые уравнения скорости химической реакции (3) или (4) справедливы только для гомогенных реакций, т. е. для таких реакций, когда реагирующие вещества не разделяет поверхность. Например, реакция происходит в водном растворе, и оба реагирующих вещества хорошо растворимы в воде или для любой смеси газов.

Другое дело, когда происходит гетерогенная реакция. В этом случае между реагирующими веществами имеется поверхность раздела, например, углекислый газ реагирует с водным раствором щёлочи. В этом случае любая молекула газа с равной вероятностью может вступить в реакцию, поскольку эти молекулы быстро и хаотично двигаются. А частицы жидкого раствора? Эти частицы двигаются чрезвычайно медленно, и те частицы щёлочи, которые находятся «на дне», практически не имеют шансов вступить в реакцию с углекислым газом, если раствор не перемешивать постоянно. Реагировать будут только те частицы, которые «лежат на поверхности». Значит, для гетерогенных реакций -

скорость реакции зависит от величины площади поверхности раздела, которая увеличивается при измельчении.

Поэтому очень часто реагирующие вещества измельчают (например, растворяют в воде), пищу тщательно пережёвывают, а в процессе приготовления - растирают, пропускают через мясорубку и т. д. Не измельчённый пищевой продукт практически не усваивается!

Таким образом, с максимальной скоростью (при прочих равных условиях) протекают гомогенные реакции в растворах и между газами, (если эти газы реагируют при н. у.), причём в растворах, где молекулы располагаются «рядом», а измельчение такое же, как в газах (и даже больше!), - скорость реакции выше.

Задание ЕГЭ. Какая из реакций протекает с наибольшей скоростью при комнатной температуре:

  1. углерода с кислородом;
  2. железа с соляной кислотой;
  3. железа с раствором уксусной кислоты
  4. растворов щёлочи и серной кислоты.

В данном случае нужно найти, какой процесс является гомогенным.

Следует отметить, что скорость химической реакции между газами или гетерогенной реакции, в которой участвует газ, зависит и от давления, поскольку при увеличении давления газы сжимаются, и концентрация частиц увеличивается (см. формулу 2). На скорость реакций, в которых газы не участвуют, изменение давления влияния не оказывает.

Задание ЕГЭ. На скорость химической реакции между раствором кислоты и железом не оказывает влияния

  1. концентрация кислоты;
  2. измельчение железа;
  3. температура реакции;
  4. увеличение давления.

И наконец, скорость реакции зависит и от реакционной способности веществ. Например, если с веществом реагирует кислород, то при прочих равных условиях, скорость реакции будет выше, чем при взаимодействии этого же вещества с азотом. Дело в том, что реакционная способность кислорода заметно выше, чем у азота. Причину этого явления мы рассмотрим в следующей части Самоучителя (урок 14).

Задание ЕГЭ. С большей скоростью идёт химическая реакция между соляной кислотой и

  1. медью;
  2. железом;
  3. магнием;
  4. цинком.

Следует отметить, что далеко не каждое столкновение молекул приводит к их химическому взаимодействию (химической реакции). В газовой смеси водорода и кислорода при обычных условиях происходит несколько миллиардов столкновений в секунду. Но первые признаки реакции (капельки воды) появятся в колбе только через несколько лет. В таких случаях говорят, что реакция практически не идёт . Но она возможна , иначе чем объяснить тот факт, что при нагревании этой смеси до 300 °C колба быстро запотевает, а при температуре 700 °C прогремит страшный взрыв! Недаром смесь водорода и кислорода называют «гремучим газом».

Вопрос. Как вы полагаете, почему скорость реакции так резко возрастает при нагревании?

Скорость реакции возрастает потому, что, во-первых, увеличивается число столкновений частиц, а во-вторых, увеличивается число активных столкновений. Именно активные соударения частиц приводят к их взаимодействию. Для того чтобы произошло такое соударение, частицы должны обладать определённым запасом энергии.

Энергия, которой должны обладать частицы, для того чтобы произошла химическая реакция, называется энергией активации.

Эта энергия расходуется на преодоление сил отталкивания между внешними электронами атомов и молекул и на разрушение «старых» химических связей.

Возникает вопрос: как повысить энергию реагирующих частиц? Ответ простой - повысить температуру, поскольку при повышении температуры возрастает скорость движения частиц, а, следовательно, их кинетическая энергия.

Правило Вант-Гоффа* :

при повышении температуры на каждые 10 градусов скорость реакции возрастает в 2–4 раза.

ВАНТ-ГОФФ Якоб Хендрик (30.08.1852–1.03.1911) - голландский химик. Один из основателей физической химии и стереохимии. Нобелевская премия по химии № 1 (1901).

Следует заметить, что это правило (не закон!) было установлено экспериментально для реакций, «удобных» для измерения, то есть для таких реакций, которые протекали не слишком быстро и не слишком медленно и при температурах, доступных экспериментатору (не слишком высоких и не слишком низких).

Вопрос . Как вы полагаете, как можно быстрее приготовить картофель: отварить его или обжарить в слое масла?

Для того чтобы как следует уяснить себе смысл описываемых явлений, можно сравнить реагирующие молекулы с группой учеников, которым предстоит прыгать в высоту. Если им поставлен барьер высотой 1 м, то ученикам придётся как следует разбежаться (повысить свою «температуру»), чтобы преодолеть барьер. Тем не менее всегда найдутся ученики («неактивные молекулы»), которые взять этот барьер не смогут.

Что делать? Если придерживаться принципа: «Умный в гору не пойдёт, умный гору обойдёт», то следует просто опустить барьер, скажем, до 40 см. Тогда любой ученик сможет преодолеть барьер. На молекулярном уровне это означает: для того чтобы увеличить скорость реакции, нужно уменьшить энергию активации в данной системе .

В реальных химических процессах эту функцию выполняет катализатор.

Катализатор - это вещество, которое изменяет скорость химической реакции, оставаясь при этом неизменным к концу химической реакции.

Катализатор участвует в химической реакции, взаимодействуя с одним или несколькими исходными веществами. При этом образуются промежуточные соединения, и изменяется энергия активации. Если промежуточное соединение более активно (активный комплекс), то энергия активации понижается, а скорость реакции увеличивается.

Например, реакция между SO 2 и О 2 происходит очень медленно, при нормальных условиях практически не идёт . Но в присутствии NO скорость реакции резко возрастает. Сначала NO очень быстро реагирует с O 2:

полученный диоксид азота быстро реагирует с оксидом серы (IV):

Задание 5.1. Покажите на этом примере, какое вещество является катализатором, а какое - активным комплексом.

И наоборот, если образуются более пассивные соединения, то энергия активации может возрасти настолько, что реакция при данных условиях практически происходить не будет. Такие катализаторы называются ингибиторами .

На практике применяются оба типа катализаторов. Так особые органические катализаторы - ферменты - участвуют абсолютно во всех биохимических процессах: переваривании пищи, сокращении мышц, дыхании. Без ферментов невозможно существование жизни!

Ингибиторы необходимы для того, чтобы защитить металлические изделия от коррозии, жиросодержащие пищевые продукты от окисления (прогоркания). Некоторые лекарства также содержат ингибиторы, которые угнетают жизненные функции микроорганизмов и тем самым уничтожают их.

Катализ может быть гомогенным и гетерогенным. Примером гомогенного катализа служит действие NO (это катализатор) на процесс окисления диоксида серы. Примером гетерогенного катализа может служить действие нагретой меди на спирт:

Эта реакция идёт в две стадии:

Задание 5.2. Определите, какое вещество в этом случае является катализатором? Почему этот вид катализа называется гетерогенным?

На практике чаще всего используется гетерогенный катализ, где катализаторами служат твёрдые вещества: металлы, их оксиды и др. На поверхности этих веществ имеются особые точки (узлы кристаллической решётки), где, собственно и происходит каталитическая реакция. Если эти точки закрыть посторонними веществом, то катализ прекращается. Это вещество, губительное для катализатора, называется каталитическим ядом . Другие вещества - промоторы - наоборот, усиливают каталитическую активность.

Катализатор может изменить направление химической реакции, то есть, меняя катализатор, можно получать разные продукты реакции. Так, из спирта C 2 H 5 OH в присутствии оксидов цинка и алюминия можно получить бутадиен, а в присутствии концентрированной серной кислоты - этилен.

Таким образом, в ходе химической реакции изменяется энергия системы. Если в ходе реакции энергия выделяется в виде теплоты Q , такой процесс называется экзотермическим :

Для эндо термических процессов теплота поглощается , т. е. тепловой эффект Q < 0 .

Задание 5.3. Определить, какой из предложенных процессов экзотермический, а какой - эндотермический:

Уравнение химической реакции, в котором указан тепловой эффект , называется термохимическим уравнением реакции. Для того чтобы составить такое уравнение, необходимо рассчитать тепловой эффект на 1 моль реагирующего вещества.

Задача. При сжигании 6 г магния выделилось 153,5 кДж теплоты. Составить термохимическое уравнение этой реакции.

Решение. Составим уравнение реакции и укажем НАД формулами, что дано:

Составив пропорцию, найдём искомый тепловой эффект реакции:

Термохимическое уравнение этой реакции:

Такие задачи приведены в заданиях большинства вариантов ЕГЭ! Например.

Задание ЕГЭ. Согласно термохимическому уравнению реакции

количество теплоты, выделившейся при сжигании 8 г метана, равно:

Обратимость химических процессов. Принцип Ле-Шателье

* ЛЕ ШАТЕЛЬЕ Анри Луи (8.10.1850–17.09.1936) - французский физико-химик и металловед. Сформулировал общий закон смещения равновесия (1884).

Реакции бывают обратимыми и необратимыми.

Необратимыми называют такие реакции, для которых не существует условий, при которых возможен обратный процесс.

Примером таких реакций могут служить реакции, которые происходят при скисании молока, или когда сгорела вкусная котлета. Как невозможно пропустить мясной фарш назад через мясорубку (и получить снова кусок мяса), также невозможно «реанимировать» котлету или сделать свежим молоко.

Но зададим себе простой вопрос: является ли необратимым процесс:

Для того чтобы ответить на этот вопрос, попробуем вспомнить, можно ли осуществить обратный процесс? Да! Разложение известняка (мела) с целью получить негашёную известь СаО используется в промышленном масштабе:

Таким образом реакция является обратимой, так как существуют условия, при которых с ощутимой скоростью протекают оба процесса:

Более того, существуют условия, при которых скорость прямой реакции равна скорости обратной реакции .

В этих условиях устанавливается химическое равновесие. В это время реакция не прекращается, но число полученных частиц равно числу разложившихся частиц. Поэтому в состоянии химического равновесия концентрации реагирующих частиц не изменяются . Например, для нашего процесса в момент химического равновесия

знак означает равновесная концентрация.

Возникает вопрос, что произойдёт с равновесием, если повысить или понизить температуру, изменить другие условия? Ответить на подобный вопрос можно, зная принцип Ле-Шателье :

если изменить условия (t, p, c), при которых система находится в состоянии равновесия, то равновесие сместится в сторону того процесса, который противодействует изменению .

Другими словами, равновесная система всегда противится любому воздействию извне, как противится воле родителей капризный ребёнок, который делает «всё наоборот».

Рассмотрим пример. Пусть установилось равновесие в реакции получения аммиака:

Вопросы. Одинаково ли число молей реагирующих газов до и после реакции? Если реакция идёт в замкнутом объёме, когда давление больше: до или после реакции?

Очевидно, что данный процесс происходит с уменьшением числа молекул газов, значит, давление в ходе прямой реакции уменьшается. В обратной реакции - наоборот, давление в смеси увеличивается .

Зададим себе вопрос, что произойдёт, если в этой системе повысить давление? По принципу Ле-Шателье пойдёт та реакция, которая «делает наоборот», т. е. понижает давление. Это - прямая реакция: меньше молекул газа - меньше давление.

Итак, при повышении давления равновесие смещается в сторону прямого процесса, где давление понижается, так как уменьшается число молекул газов.

Задание ЕГЭ. При повышении давления равновесие смещается вправо в системе:

Если в результате реакции число молекул газов не меняется, то изменение давления на положение равновесия не оказывает влияние.

Задание ЕГЭ. Изменение давления оказывает влияние на смещение равновесия в системе:

Положение равновесия этой и любой другой реакции зависит от концентрации реагирующих веществ: увеличивая концентрацию исходных веществ и уменьшая концентрацию полученных веществ, мы всегда смещаем равновесие в сторону прямой реакции (вправо).

Задание ЕГЭ.

сместится влево при:

  1. повышении давления;
  2. понижении температуры;
  3. повышении концентрации СО;
  4. понижении концентрации СО.

Процесс синтеза аммиака экзотермичен, то есть сопровождается выделением теплоты, то есть повышением температуры в смеси.

Вопрос. Как сместится равновесие в этой системе при понижении температуры ?

Рассуждая аналогично, делаем вывод : при понижении температуры равновесие сместится в сторону образования аммиака, так как в этой реакции теплота выделяется, а температура повышается.

Вопрос. Как изменится скорость химической реакции при понижении температуры?

Очевидно, что при понижении температуры резко понизится скорость обеих реакций, т. е. придётся очень долго ждать, когда же установится желаемое равновесие. Что делать? В этом случае необходим катализатор . Он хотя и не влияет на положение равновесия , но ускоряет наступление этого состояния.

Задание ЕГЭ. Химическое равновесие в системе

смещается в сторону образования продукта реакции при:

  1. повышении давления;
  2. повышении температуры;
  3. понижении давления;
  4. применении катализатора.

Выводы

Скорость химической реакции зависит от:

  • природы реагирующих частиц;
  • концентрации или площади поверхности раздела реагирующих веществ;
  • температуры;
  • наличия катализатора.

Равновесие устанавливается, когда скорость прямой реакции равна скорости обратного процесса. В этом случае равновесная концентрация реагирующих веществ не меняется. Состояние химического равновесия зависит от условий и подчиняется принципу Ле-Шателье.

Изучением скорости химической реакции и условиями, влияющими на ее изменение, занимается одно из направлений физической химии - химическая кинетика. Она также рассматривает механизмы протекания этих реакций и их термодинамическую обоснованность. Эти исследования важны не только в научных целях, но и для контроля взаимодействия компонентов в реакторах при производстве всевозможных веществ.

Понятие скорости в химии

Скоростью реакции принято называть некое изменение концентраций, вступивших в реакцию соединений (ΔС) в единицу времени (Δt). Математическая формула скорости химической реакции выглядит следующим образом:

ᴠ = ±ΔC/Δt.

Измеряют скорость реакции в моль/л∙с, если она происходит во всем объеме (то есть реакция гомогенная) и в моль/м 2 ∙с, если взаимодействие идет на поверхности, разделяющей фазы (то есть реакция гетерогенная). Знак «-» в формуле имеет отношение к изменению значений концентраций исходных реагирующих веществ, а знак «+» - к изменяющимся значениям концентраций продуктов той же самой реакции.

Примеры реакций с различной скоростью

Взаимодействия химических веществ могут осуществляться с различной скоростью. Так, скорость нарастания сталактитов, то есть образования карбоната кальция, составляет всего 0,5 мм за 100 лет. Медленно идут некоторые биохимические реакции, например, фотосинтез и синтез белка. С довольно низкой скоростью протекает коррозия металлов.

Средней скоростью можно охарактеризовать реакции, требующие от одного до нескольких часов. Примером может послужить приготовление пищи, сопровождающееся разложением и превращением соединений, содержащихся в продуктах. Синтез отдельных полимеров требует нагревания реакционной смеси в течение определенного времени.

Примером химических реакций, скорость которых довольно высока, могут послужить реакции нейтрализации, взаимодействие гидрокарбоната натрия с раствором уксусной кислоты, сопровождающееся выделением углекислого газа. Также можно упомянуть взаимодействие нитрата бария с сульфатом натрия, при котором наблюдается выделение осадка нерастворимого сульфата бария.

Большое число реакций способно протекать молниеносно и сопровождаются взрывом. Классический пример - взаимодействие калия с водой.

Факторы, влияющие на скорость химической реакции

Стоит отметить, что одни и те же вещества могут реагировать друг с другом с различной скоростью. Так, например, смесь газообразных кислорода и водорода может довольно длительное время не проявлять признаков взаимодействия, однако при встряхивании емкости или ударе реакция приобретает взрывной характер. Поэтому химической кинетикой и выделены определенные факторы, которые имеют способность оказывать влияние на скорость химической реакции. К ним относят:

  • природу взаимодействующих веществ;
  • концентрацию реагентов;
  • изменение температуры;
  • наличие катализатора;
  • изменение давления (для газообразных веществ);
  • площадь соприкосновения веществ (если говорят о гетерогенных реакциях).

Влияние природы вещества

Столь существенное отличие в скоростях химических реакций объясняется разными значениями энергии активации (Е а). Под ней понимают некое избыточное количество энергии в сравнении со средним ее значением, необходимым молекуле при столкновении, для того чтобы реакция произошла. Измеряется в кДж/моль и значения обычно бывают в границах 50-250.

Принято считать, что если Е а =150 кДж/моль для какой-либо реакции, то при н. у. она практически не протекает. Эта энергия тратится на преодоление отталкивания между молекулами веществ и на ослабление связей в исходных веществах. Иными словами, энергия активации характеризует прочность химических связей в веществах. По значению энергии активации можно предварительно оценить скорость химической реакции:

  • Е а < 40, взаимодействие веществ происходят довольно быстро, поскольку почти все столкнове-ния частиц при-водят к их реакции;
  • 40-<Е а <120, предполагается средняя реакция, поскольку эффективными будет лишь половина соударений молекул (например, реакция цинка с соляной кислотой);
  • Е а >120, только очень малая часть стол-кновений частиц приведет к реакции, и скорость ее будет низкой.

Влияние концентрации

Зависимость скорости реакции от концентрации вернее всего характеризуется законом действующих масс (ЗДМ), который гласит:

Скорость химической реакции имеет прямо пропорциональную зависимость от произведения концентраций, вступивших в реакцию веществ, значения которых взяты в степенях, соответствующих им стехиометрическим коэффициентам.

Этот закон подходит для элементарных одностадийных реакций, или же какой-либо стадии взаимодействия веществ, характеризующегося сложным механизмом.

Если требуется определить скорость химической реакции, уравнение которой можно условно записать как:

αА+ bB = ϲС, то,

в соответствии с выше обозначенной формулировкой закона, скорость можно найти по уравнению:

V=k·[A] a ·[B] b , где

a и b - стехиометрические коэффициенты,

[A] и [B] - концентрации исходных соединений,

k - константа скорости рассматриваемой реакции.

Смысл коэффициента скорости химической реакции заключается в том, что ее значение будет равно скорости, если концентрации соединений будут равны единицам. Следует отметить, что для правильного расчета по этой формуле стоит учитывать агрегатное состояние реагентов. Концентрацию твердого вещества принимают равной единице и не включают в уравнение, поскольку в ходе реакции она остается постоянной. Таким образом, в расчет по ЗДМ включают концентрации только жидких и газообразных веществ. Так, для реакции получения диоксида кремния из простых веществ, описываемой уравнением

Si (тв) + Ο 2(г) = SiΟ 2(тв) ,

скорость будет определяться по формуле:

Типовая задача

Как изменилась бы скорость химической реакции монооксида азота с кислородом, если бы концентрации исходных соединений увеличили в два раза?

Решение: Этому процессу соответствует уравнение реакции:

2ΝΟ + Ο 2 = 2ΝΟ 2 .

Запишем выражения для начальной (ᴠ 1) и конечной (ᴠ 2) скоростей реакции:

ᴠ 1 = k·[ΝΟ] 2 ·[Ο 2 ] и

ᴠ 2 = k·(2·[ΝΟ]) 2 ·2·[Ο 2 ] = k·4[ΝΟ] 2 ·2[Ο 2 ].

ᴠ 1 /ᴠ 2 = (k·4[ΝΟ] 2 ·2[Ο 2 ]) / (k·[ΝΟ] 2 ·[Ο 2 ]).

ᴠ 2 /ᴠ 1 = 4·2/1 = 8.

Ответ: увеличилась в 8 раз.

Влияние температуры

Зависимость скорости химической реакции от температуры была определена опытным путем голландским ученым Я. Х. Вант-Гоффом. Он установил, что скорость многих реакций возрастает в 2-4 раза с повышением температуры на каждые 10 градусов. Для этого правила имеется математическое выражение, которое имеет вид:

ᴠ 2 = ᴠ 1 ·γ (Τ2-Τ1)/10 , где

ᴠ 1 и ᴠ 2 - соответствующие скорости при температурах Τ 1 и Τ 2 ;

γ - температурный коэффициент, равен 2-4.

Вместе с тем это правило не объясняет механизма влияния температуры на значение скорости той или иной реакции и не описывает всей совокупности закономерностей. Логично сделать вывод о том, что с повышением температуры, хаотичное движение частиц усиливается и это провоцирует большее число их столкновений. Однако это не особо влияет на эффективность соударения молекул, поскольку она зависит, главным образом, от энергии активации. Также немалую роль в эффективности столкновения частиц имеет их пространственное соответствие друг другу.

Зависимость скорости химической реакции от температуры, учитывающая природу реагентов, подчиняется уравнению Аррениуса:

k = А 0 ·е -Еа/RΤ , где

А о - множитель;

Е а - энергия активации.

Пример задачи на закон Вант-Гоффа

Как следует изменить температуру, чтобы скорость химической реакции, у которой температурный коэффициент численно равен 3, выроста в 27 раз?

Решение. Воспользуемся формулой

ᴠ 2 = ᴠ 1 ·γ (Τ2-Τ1)/10 .

Из условия ᴠ 2 /ᴠ 1 = 27, а γ = 3. Найти нужно ΔΤ = Τ 2 -Τ 1 .

Преобразовав исходную формулу получаем:

V 2 /V 1 =γ ΔΤ/10 .

Подставляем значения: 27=3 ΔΤ/10 .

Отсюда понятно, что ΔΤ/10 = 3 и ΔΤ = 30.

Ответ: температуру следует повысить на 30 градусов.

Влияние катализаторов

В физической химии скорость химических реакций активно изучает также раздел, называемый катализом. Его интересует, как и почему сравнительно малые количества тех или иных веществ существенно увеличивают скорость взаимодействия других. Такие вещества, которые могут ускорять реакцию, но сами при этом в ней не расходуются, называются катализаторами.

Доказано, что катализаторы меняют механизм самого химического взаимодействия, способствуют появлению новых переходных состояний, для которых характерны меньшие высоты энергетического барьера. То есть они способствуют снижению энергии активации, а значит и увеличению количества эффективных ударений частиц. Катализатор не может вызвать реакцию, которая энергетически невозможна.

Так пероксид водорода способен разлагаться с образованием кислорода и воды:

Н 2 Ο 2 = Н 2 Ο + Ο 2 .

Но эта реакция очень медленная и в наших аптечках она существует в неизменном виде довольно долгое время. Открывая лишь очень старые флаконы с перекисью, можно заметить небольшой хлопок, вызванный давлением кислорода на стенки сосуда. Добавление же всего нескольких крупинок оксида магния спровоцирует активное выделение газа.

Та же реакция разложения перекиси, но уже под действием каталазы, происходит при обработке ран. В живых организмах находится много различных веществ, которые увеличивают скорость биохимических реакций. Их принято называть ферментами.

Противоположный эффект на протекание реакций оказывают ингибиторы. Однако это не всегда плохо. Ингибиторы используют для защиты металлической продукции от коррозии, для продления срока хранения пищи, например, для предотвращения окисления жиров.

Площадь соприкосновения веществ

В том случае, если взаимодействие идет между соединениями, имеющими разные агрегатные состояния, или же между веществами, которые не способны образовывать гомогенную среду (не смешивающиеся жидкости), то еще и этот фактор влияет на скорость химической реакции существенно. Связано это с тем, что гетерогенные реакции осуществляются непосредственно на границе раздела фаз взаимодействующих веществ. Очевидно, что чем обширнее эта граница, тем больше частиц имеют возможность столкнуться, и тем быстрее идет реакция.

Например, гораздо быстрее идет в виде мелких щепок, нежели в виде бревна. С той же целью многие твердые вещества растирают в мелкий порошок, прежде чем добавлять в раствор. Так, порошкообразный мел (карбонат кальция) быстрее действует с соляной кислотой, чем кусочек той же массы. Однако, помимо увеличения площади, данный прием приводит также к хаотичному разрыву кристаллической решетки вещества, а значит, повышает реакционную способность частиц.

Математически скорость гетерогенной химической реакции находят, как изменение количества вещества (Δν), происходящее в единицу вре-мени (Δt) на единице поверхности

(S): V = Δν/(S·Δt).

Влияние давления

Изменение давления в системе оказывает влияние лишь в том случае, когда в реакции принимают участие газы. Повышение давления сопровождается увеличением молекул вещества в единице объема, то есть концентрация его пропорционально возрастает. И наоборот, понижение давление приводит к эквивалентному уменьшению концентрации реагента. В этом случае подходит для вычисления скорости химической реакции формула, соответствующая ЗДМ.

Задача. Как возрастет скорость реакции, описываемой уравнением

2ΝΟ + Ο 2 = 2ΝΟ 2 ,

если объем замкнутой системы уменьшить в три раза (Т=const)?

Решение. При уменьшении объема пропорционально увеличивается давление. Запишем выражения для начальной (V 1) и конечной (V 2) скоростей реакции:

V 1 = k· 2 ·[Ο 2 ] и

V 2 = k·(3·) 2 ·3·[Ο 2 ] = k·9[ΝΟ] 2 ·3[Ο 2 ].

Чтобы найти во сколько раз новая скорость больше начальной, следует разделить левые и правые части выражений:

V 1 /V 2 = (k·9[ΝΟ] 2 ·3[Ο 2 ]) / (k·[ΝΟ] 2 ·[Ο 2 ]).

Значения концентраций и константы скорости сокращаются, и остается:

V 2 /V 1 = 9·3/1 = 27.

Ответ: скорость возросла в 27 раз.

Подводя итог, нужно отметить, что на скорость взаимодействия веществ, а точнее, на количество и качество столкновений их частиц, влияет множество факторов. В первую очередь - это энергия активации и геометрия молекул, которые практически невозможно скорректировать. Что касается остальных условий, то для роста скорости реакции следует:

  • увеличить температуру реакционной среды;
  • повысить концентрации исходных соединений;
  • увеличить давление в системе или уменьшить ее объем, если речь идет о газах;
  • привести разнородные вещества к одному агрегатному состоянию (например, растворив в воде) или увеличить площадь их соприкосновения.