Природный газ сгорание. Горение природного газа

  • Дата: 15.03.2020

Антропотоксины;

Продукты деструкции полимерных материалов;

Вещества, поступающие в помещение с загрязненным атмосферным воздухом;

Химические вещества, выделяющиеся из полимерных материалов даже в небольших количествах, могут вызвать существенные нарушения в состоянии живого организма, например, в случае аллергического воздействия полимерных материалов.

Интенсивность выделения летучих веществ зависит от условий эксплуатации полимерных материалов - температуры, влажности, кратности воздухообмена, времени эксплуатации.

Установлена прямая зависимость уровня химического за­грязнения воздушной среды от общей насыщенности помещений полимерными материалами.

Более чувствителен к воздействию летучих компонентов из полимерных материалов растущий организм. Установлена также повышенная чувствительность больных к воздействию химических веществ, выделяющихся из пластиков, по сравне­нию со здоровыми. Исследования показали, что в помещениях с большой насыщенностью полимерами подверженность насе­ления аллергическим, простудным заболеваниям, неврастении, вегетодистонии, гипертонии оказалась выше, чем в помеще­ниях, где полимерные материалы использовались в меньшем количестве.

Для обеспечения безопасности применения полимерных материалов принято, что концентрации выделяющихся из по­лимеров летучих веществ в жилых и общественных зданиях не должны превышать их ПДК, установленные для атмосферного воздуха, а суммарный показатель отношений обнаруженных концентраций нескольких веществ к их ПДК должен быть не выше единицы. С целью предупредительного санитарного надзора за полимерными материалами и изделиями из них предложено лимитировать выделение ими вредных веществ в окружающую среду или на стадии изготовления, или вскоре после их выпуска заводами-изготовителями. В настоящее время обоснованы допустимые уровни около 100 химических веществ, выделяющихся из полимерных материалов.

В современном строительстве все отчетливее проявляется тенденция к химизации технологических процессов и использо­ванию в качестве смесей различных веществ, в первую очередь бетона и железобетона. С гигиенической точки зрения важно учитывать неблагоприятное влияние химических добавок в стро­ительные материалы из-за выделения токсических веществ.

Не менее мощным внутренним источником загрязнения среды помещений служат и продукты жизнедеятельности человека - антропотоксины. Установлено, что в процессе жиз­недеятельности человек выделяет примерно 400 химических соединений.

Исследования показали, что воздушная среда невентилируемых помещений ухудшается пропорционально числу лиц и времени их пребывания в помещении. Химический анализ воз­духа помещений позволил идентифицировать в них ряд токси­ческих веществ, распределение которых по классам опасности представляется следующим образом: диметиламин, сероводород, двуокись азота, окись этилена, бензол (второй класс опасности - высокоопасные вещества); уксусная кислота, фенол, метилсти-рол, толуол, метанол, винилацетат (третий класс опасности - малоопасные вещества). Пятая часть выявленных антропотоксинов относится к высокоопасным веществам. При этом обнаруже­но, что в невентилируемом помещении концентрации диметиламина и сероводорода превышали ПДК для атмосферного воздуха. Превышали ПДК или находились на их уровне и концентрации таких веществ, как двуокись и окись углерода, аммиак. Осталь­ные вещества, хотя и составляли десятые и меньшие доли ПДК, вместе взятые свидетельствовали о неблагополучии воздушной среды, поскольку даже двух-четырехчасовое пребывание в этих условиях отрицательно сказывалось на умственной работоспо­собности исследуемых.



Изучение воздушной среды газифицированных помеще­ний показало, что при часовом горении газа в воздухе помещений концентрация веществ составляла (мг/м 3): окиси углерода - в среднем 15, формальдегида - 0,037, окиси азота - 0,62, дву­окиси азота - 0,44, бензола - 0,07. Температура воздуха в помещении во время горения газа повышалась на 3-6 °С, влаж­ность увеличивалась на 10-15%. Причем высокие концентрации химических соединений наблюдались не только в кухне, но и в жилых помещениях квартиры. После выключения газовых приборов содержание в воздухе окиси углерода и других хими­ческих веществ снижалось, но к исходным величинам иногда не возвращалось и через 1,5-2,5 ч.

Изучение действия продуктов горения бытового газа на внешнее дыхание человека выявило увеличение нагрузки на систему дыхания и изменение функционального состояния цен­тральной нервной системы.

Одним из самых распространенных источников загрязнения воздушной среды закрытых помещений является курение. При спектрометрическом анализе воздуха, загрязненного табачным дымом, обнаружено 186 химических соединений. В недостаточно проветриваемых помещениях загрязнение воздушной среды продуктами курения может достигать 60-90%.

При изучении воздействия компонентов табачного дыма на некурящих (пассивное курение) у испытуемых наблюдалось раздражение слизистых оболочек глаз, увеличение содержания в крови карбоксигемоглобина, учащение пульса, повышение уровня артериального давления. Таким образом, основные источники загрязнения воздушной среды помещения условно можно разделить на четыре группы:

Значимость внутренних источников загрязнения в различ­ных типах зданий неодинакова. В административных зданиях уровень суммарного загрязнения наиболее тесно коррелиру­ет с насыщенностью помещений полимерными материалами (R = 0,75), в крытых спортивных сооружениях уровень химичес­кого загрязнения наиболее хорошо коррелирует с численностью людей в них (R = 0,75). Для жилых зданий теснота корреляцион­ной связи уровня химического загрязнения как с насыщенностью помещений полимерными материалами, так и с количеством людей в помещении приблизительно одинаковая.

Химическое загрязнение воздушной среды жилых и об­щественных зданий при определенных условиях (плохой вен­тиляции, чрезмерной насыщенности помещений полимерными материалами, большом скоплении людей и др.) может достигать уровня, оказывающего негативное влияние на общее состояние организма человека.

В последние годы, по данным ВОЗ, значительно возросло число сообщений о так называемом синдроме больных зданий. Описанные симптомы ухудшения здоровья людей, проживаю­щих или работающих в таких зданиях, отличаются большим раз­нообразием, однако имеют и ряд общих черт, а именно: головные боли, умственное переутомление, повышенная частота воздуш­но-капельных инфекций и простудных заболеваний, раздраже­ние слизистых оболочек глаз, носа, глотки, ощущение сухости слизистых оболочек и кожи, тошнота, головокружение.

Первая кате­гория - временно "больные" здания - включает недавно пос­троенные или недавно реконструированные здания, в которых интенсивность проявления указанных симптомов с течением времени ослабевает и в большинстве случаев примерно через полгода они исчезают совсем. Уменьшение остроты проявления симптомов, возможно, связано с закономерностями эмиссии ле­тучих компонентов, содержащихся в стройматериалах, красках и т. д.

В зданиях второй категории - постоянно "больных" опи­санные симптомы наблюдаются в течение многих лет, и даже широкомасштабные оздоровительные мероприятия могут не дать эффекта. Объяснение такой ситуации, как правило, найти трудно, несмотря на тщательное изучение состава воздуха, работы вентиляционной системы и особенностей конструкции здания.

Следует отметить, что не всегда удается обнаружить пря­мую зависимость между состоянием воздушной среды помеще­ния и состоянием здоровья населения.

Однако обеспечение оптимальной воздушной среды жилых и общественных зданий - важная гигиеническая и инженерно-техническая проблема. Ведущим звеном в решении этой пробле­мы является воздухообмен помещений, который обеспечивает требуемые параметры воздушной среды. При проектировании систем кондиционирования воздуха в жилых и общественных зданиях необходимая норма воздухоподачи рассчитывается в объеме, достаточном для ассимиляции тепло- и влаговыделений человека, выдыхаемой углекислоты, а в помещениях, предна­значенных для курения, учитывается и необходимость удаления табачного дыма.

Помимо регламентации количества приточного воздуха и его химического состава известное значение для обеспечения воздушного комфорта в закрытом помещении имеет электри­ческая характеристика воздушной среды. Последняя определя­ется ионным режимом помещений, т. е. уровнем положительной и отрицательной аэроионизации. Негативное воздействие на организм оказывает как недостаточная, так и избыточная ио­низация воздуха.

Проживание в местностях с содержанием отрицательных аэроионов порядка 1000-2000 в 1 мл воздуха благоприятно влия­ет на состояние здоровья населения.

Присутствие людей в помещениях вызывает снижение содержания легких аэроионов. При этом ионизация воздуха изменяется тем интенсивнее, чем больше в помещении людей и чем меньше его площадь.

Уменьшение числа легких ионов связывают с потерей воз­духом освежающих свойств, с его меньшей физиологической и химической активностью, что неблагоприятно действует на организм человека и вызывает жалобы на духоту и "нехватку кислорода". Поэтому особый интерес представляют процессы деионизации и искусственной ионизации воздуха в помещении, которые, естественно, должны иметь гигиеническую регламен­тацию.

Необходимо подчеркнуть, что искусственная ионизация воздуха помещений без достаточного воздухоснабжения в ус­ловиях высокой влажности и запыленности воздуха ведет к неизбежному возрастанию числа тяжелых ионов. Кроме того, в случае ионизации запыленного воздуха процент задержки пыли в дыхательных путях резко возрастает (пыль, несущая электри­ческие заряды, задерживается в дыхательных путях человека в гораздо большем количестве, чем нейтральная).

Следовательно, искусственная ионизация воздуха не яв­ляется универсальной панацеей для оздоровления воздуха закрытых помещений. Без улучшения всех гигиенических па­раметров воздушной среды искусственная ионизация не только не улучшает условий обитания человека, но, напротив, может оказать негативный эффект.

Оптимальными суммарными концентрациями легких ионов являются уровни порядка 3 х 10, а минимально необходимыми 5 х 10 в 1 см 3 . Эти рекомендации легли в основу действующих в Российской Федерации санитарно-гигиенических норм допу­стимых уровней ионизации воздуха производственных и обще­ственных помещений (табл. 6.1).

Горение газообразного топлива представляет собой сочетание следующих физических и химических процессов: смешение горючего газа с воздухом, подогрев смеси, термическое разложение горючих компонентов, воспламенение и химическое соединение горючих элементов с кислородом воздуха.

Устойчивое горение газовоздушной смеси возможно при непрерывном подводе к фронту горения необходимых количеств горючего газа и воздуха, их тщательном перемешивании и нагреве до температуры воспламенения или самовоспламенения (табл. 5).

Воспламенение газовоздушной смеси может быть осуществлено:

  • нагревом всего объема газовоздушной смеси до температуры самовоспламенения. Такой способ применяют в двигателях внутреннего сгорания, где газовоздушную смесь нагревают быстрым сжатием до определенного давления;
  • применением посторонних источников зажигания (запальников и т. д.). В этом случае до температуры воспламенения нагревается не вся газовоздушная смесь, а ее часть. Данный способ применяется при сжигании газов в горелках газовых приборов;
  • существующим факелом непрерывно в процессе горения.

Для начала реакции горения газообразного топлива следует затратить определенное количество энергии, необходимой для разрыва молекулярных связей и создания новых.

Химическая формула сгорания газового топлива с указанием всего механизма реакции, связанного с возникновением и исчезновением большого количества свободных атомов, радикалов и других активных частиц, сложна. Поэтому для упрощения пользуются уравнениями, выражающими начальное и конечное состояния реакций горения газа.

Если углеводородные газы обозначить С m Н n , то уравнение химической реакции горения этих газов в кислороде примет вид

C m H n + (m + n/4)O 2 = mCO 2 + (n/2)H 2 O ,

где m - количество атомов углерода в углеводородном газе; n - количество атомов водорода в газе; (m + n/4) - количество кислорода, необходимое для полного сгорания газа.

В соответствии с формулой выводятся уравнения горения газов:

  • метана СН 4 + 2O 2 = СO 2 + 2Н 2 O
  • этана С 2 Н 6 + 3,5O 2 = 2СO 2 + ЗН 2 O
  • бутана С 4 Н 10 + 6,5O 2 = 4СO 2 + 5Н 2 0
  • пропана C 3 H 8 + 5O 3 = ЗСO 2 + 4Н 2 O.

В практических условиях сжигания газа кислород берется не в чистом виде, а входит в состав воздуха. Так как воздух состоит по объему на 79 % из азота и на 21 % из кислорода, то на каждый объем кислорода требуется 100: 21 = 4,76 объема воздуха или 79: 21 = = 3,76 объема азота. Тогда реакцию горения метана в воздухе можно записать следующим образом:

СН 4 + 2O 2 + 2*3,76N 2 = CO 2 + 2H 2 O + 7,52N 2 .

Из уравнения видно, что для сжигания 1 м 3 метана требуется 1 м 3 кислорода и 7,52 м 3 азота или 2 + 7,52 = 9,52 м 3 воздуха.

В результате сгорания 1 м 3 метана получается 1 м 3 диоксида углерода, 2 м 3 водяных паров и 7,52 м 3 азота. В таблице ниже приведены эти данные для наиболее распространенных горючих газов.

Для процесса горения газовоздушной смеси необходимо, чтобы количество газа и воздуха в газовоздушной смеси было в определенных пределах. Эти пределы называются пределами воспламеняемости или пределами взрываемости. Различают нижний и верхний пределы воспламеняемости. Минимальное содержание газа в газовоздушной смеси, выраженное в объемных процентах, при котором происходит воспламенение, называется нижним пределом воспламеняемости. Максимальное содержание газа в газовоздушной смеси, выше которого смесь не воспламеняется без подвода дополнительной теплоты, называется верхним пределом воспламеняемости.

Количество кислорода и воздуха при сжигании некоторых газов

Для сжигания 1 м 3 газа требуется, м 3

При сжигании 1 м 3 газа выделяется, м 3

Теплота сгорания Он,кДж/м 3

кислорода

диоксида

углерода

Оксид углерода

Если в газовоздушной смеси содержится газа меньше нижнего предела воспламеняемости, то она не будет гореть. Если в газовоздушной смеси недостаточно воздуха, то горение протекает не полностью.

Большое влияние на величины пределов взрываемости оказывают инертные примеси в газах. Увеличение содержания в газе балласта (N 2 и СO 2) сужает пределы воспламеняемости, а при повышении содержания балласта выше определенных пределов газовоздушная смесь не воспламеняется при любых соотношениях газа и воздуха (таблица ниже).

Количество объемов инертного газа на 1 объем горючего газа, при котором газовоздушная смесь перестает быть взрывоопасной

Наименьшее количество воздуха, необходимое для полного сжигания газа, называется теоретическим расходом воздуха и обозначается Lt, то есть если низшая теплота сгорания газового топлива 33520 кДж/м 3 , то теоретически необходимое количество воздуха для сжигания 1 м 3 газа

L T = (33 520/4190)/1,1 = 8,8 м 3 .

Однако действительный расход воздуха всегда превышает теоретический. Объясняется это тем, что очень трудно достигнуть полного сгорания газа при теоретических расходах воздуха. Поэтому любая газовая установка для сжигания газа работает с некоторым избытком воздуха.

Итак, практический расход воздуха

L n = αL T ,

где L n - практический расход воздуха; α - коэффициент избытка воздуха; L T - теоретический расход воздуха.

Коэффициент избытка воздуха всегда больше единицы. Для природного газа он составляет α = 1,05 - 1,2. Коэффициент α показывает, во сколько раз действительный расход воздуха превышает теоретический, принимаемый за единицу. Если α = 1, то газовоздушная смесь называется стехиометрической .

При α = 1,2 сжигание газа производится с избытком воздуха на 20 %. Как правило, сжигание газов должно проходить с минимальным значением а, так как с уменьшением избытка воздуха снижаются потери теплоты с уходящими газами. Воздух, принимающий участие в горении, бывает первичным и вторичным. Первичным называется воздух, поступающий в горелку для смешения в ней с газом; вторичным — воздух, поступающий в зону горения не в смеси с газом, а отдельно.

Горением называют быстро протекающую во времени химическую реак-цию соединения горючих компонентов топлива с кислородом воздуха, сопровож-дающуюся интенсивным выделением теплоты, света и продуктов сгорания.

Для метана реакция горения с воздухом:

CH4 + 2O2 = CO2 + 2H2 O + Q н

C3 H8 + 5O2 = 3CO2 + 3H2 O + Q н

Для СУГ :

C4 H10 + 6,5O2 = 4CO2 + 5H2 O + Q н

Продуктами полного сгорания газов являются водяные пары (H 2 O ), диоксид углерода (CO 2 ) или углекислый газ.

При полном сгорании газов цвет пламени, как правило, голубовато-фиолетовый.

Объемный состав сухого воздуха принимается: O 2 21%, N 2 79%, из этого след., что

1м3 кислорода содержится в 4,76м3 (5 м3 ) воздуха.

Вывод: для сжигания

- 1м3 метана необходимо 2м3 кислорода или около 10м3 воздуха,

- 1м3 пропана - 5м3 кислорода или около 25м3 воздуха,

- 1м3 бутана - 6,5м3 кислорода или около 32,5м3 воздуха,

- 1м3 СУГ ~ 6м3 кислорода или около 30м3 воздуха.

Практически при сжигании газа водяные пары, как правило, не конденсируются, а удаляются вместе с другими продуктами сгорания. Поэтому технические расчеты ведут по низшей теплоте сгорания Q н.

Условия, необходимые для горения:

1. наличие топлива (газа);

2. наличие окислителя (кислорода воздуха);

3. наличие источника температуры воспламенения.

Неполное сгорание газов.

Причиной неполного сгорания газа является недостаточное количество воздуха.

Продуктами неполного сгорания газов являются оксид углерода или угарный газ (CO ), несгоревшие горючие углеводороды (Cn Hm ) и атомарный углерод или сажа.

Для природного газа CH 4 + O 2 CO 2 + H 2 O + CO + CH 4 + C

Для СУГ Cn Hm + O2 → CO2 + H2 O + CO + Cn Hm + C

Наиболее опасным является появление угарного газа, который действует на организм человека отравляюще. Образование сажи придает пламени желтую окраску.

Неполное сгорание газа опасно для здоровья человека (при содержании 1% СО в воздухе 2-3 вздоха для человека достаточно, чтобы отравиться со смертельным исходом).

Неполное сгорание неэкономично (сажа препятствует процессу передачи тепла, при неполном сгорании газа мы недополучаем тепло, ради которого сжигаем газ).

Для контроля полноты сгорания обращают внимание на цвет пламени, которое при полном сгорании должно быть голубым, а при неполном сгорании - желтовато-соломенным. Наиболее совершенный способ контроля полноты сгорания - анализ продуктов сгорания с помощью газоанализаторов.

Способы сжигания газа.

Понятие о первичном и вторичном воздухе.

Существуют 3 способа сжигания газа:

1) диффузионный,

2) кинетический,

3) смешанный.

Диффузионный способ или способ без предварительного смешения газа с воздухом.

Из горелки в зону горения поступает только газ. Воздух, необходимый для горения, смешивается с газом в зоне горения. Этот воздух называется вторичным.

Пламя вытянутое, желтого цвета.

a = 1,3÷1,5 t ≈ (900÷1000) о С

Кинетический способ - способ с полным предварительным смешением газа с воздухом.

В горелку подается газ и подается воздух дутьевым устройством. Воздух, необходимый для горения и который подается в горелку для предварительного смешения с газом, называется первичным.

Пламя короткое, зеленовато-синеватого цвета.

a = 1,01÷1,05 t ≈ 1400о С

Смешанный способ - способ с частичным предварительным смешиванием газа с воздухом.

Газ инжектирует первичный воздух в горелку. В зону горения из горелки поступает газовоздушная смесь с недостаточным для полного сгорания количеством воздуха. Остальной воздух - вторичный.

Пламя средних размеров, зеленовато-голубоко цвета.

a =1,1 ¸ 1,2 t ≈1200о С

Коэффициент избытка воздуха a = L пр./ L теор. - это отношение количества воздуха, необходимого для горения на практике к количеству воздуха, необходимого для горения и теоретически посчитанного.

Всегда должен быть a >1, в противном случае будет недожог.

L пр.= a L теор., т.е. коэффициент избытка воздуха показывает во сколько раз количество воздуха, необходимого для горения на практике больше количества воздуха, необходимого для горения и посчитанного теоретически.

Подобный дефект связан с неисправностью системы автоматики котла. Отметим, что эксплуатировать котел с отключенной автоматикой (например, если принудительно заклинить пусковую кнопку в нажатом состоянии) категорически запрещено. Это может привести к трагическим последствиям, так как при кратковременном прекращении подачи газа или при погасании пламени сильным потоком воздуха, газ начнет поступать в помещение. Для понимания причин возникновения подобного дефекта, рассмотрим подробнее работу системы автоматики. На рис. 5 показана упрощенная схема этой системы. Схема состоит из электромагнита, вентиля, датчика тяги и термопары. Для включения запальника нажимают пусковую кнопку. Шток, связанный с кнопкой, давит на мембрану вентиля, и газ начинает поступать к запальнику. После этого зажигают запальник. Пламя запальника касается корпуса датчика температуры (термопары). Спустя некоторое время (30...40 с) термопара нагревается и на ее выводах появляется ЭДС, которой достаточно для срабатывания электромагнита. Последний, в свою очередь, фиксирует шток в нижнем (как на рис. 5) положении. Теперь пусковую кнопку можно отпустить. Датчик тяги состоит из биметаллической пластины и контакта (рис. 6). Датчик расположен в верхней части котла, возле трубы отвода продуктов горения в атмосферу. В случае засора трубы ее температура резко повышается. Биметаллическая пластина нагревается и разрывает цепь подачи напряжения на электромагнит - шток больше не удерживается электромагнитом, вентиль закрывается, и подача газа прекращается. Расположение элементов устройства автоматики показано на рис. 7. На нем видно, что электромагнит закрыт защитным колпаком. Провода от датчиков расположены внутри тонкостенных трубок К электромагниту трубки крепятся при помощи накидных гаек. Корпусные выводы датчиков подключаются к электромагниту через корпус самих трубок. А теперь рассмотрим методику поиска указанной выше неисправности. Проверку начинают с самого «слабого звена» уст­ройства автоматики - датчика тяги. Датчик не защи­щен кожухом, поэтому через 6... 12 месяцев эксплуа­тации «обрастает» толстым слоем пыли Биметалли­ческая пластина (см. рис. 6) быстро окисляется, что приводит к ухудшению контакта. Шубу из пыли удаляют мягкой кистью. Затем плас­тину оттягивают от контакта и зачищают мелкой на­ждачной бумагой. Не следует забывать, что необхо­димо очистить и сам контакт. Хорошие результаты дает чистка указанных элементов специальным спреем «Контакт». В его состав входят вещества, активно разрушающие оксидную пленку. После чистки на пластину и контакт наносят тонкий слой жидкой смазки. Следующим шагом проверяют исправность термопары. Она работает в тяжелом тепловом режиме, так как постоянно находится в пламени запальника, естественно, ее срок службы значительно меньше остальных элементов котла. Основной дефект термопары - прогар (разрушение) ее корпуса. При этом резко возрастает переходное сопротивление в месте сварки (спая). Вследствие этого, ток в цепи Термопара - Электромагнит - Биметаллическая пластина будет ниже номинального значения, что приводит к тому, что электромагнит уже не сможет фиксировать шток (рис. 5). Для проверки термопары откручивают накидную гайку (рис. 7), расположенную с левой стороны электромагнита. Затем включают запальник и вольтметром замеряют постоянное напряжение (термо-ЭДС) на контактах термопары (рис. 8). Нагретая исправная термопара формирует ЭДС около 25...30 мВ. Если же это значение меньше, термопара неисправна. Для ее окончательной проверки отстыковывают трубку от кожуха электромагнита и замеряют сопротивление термопары Сопротивление нагретой термопары составляет менее 1 Ом. Если же сопротивление термопары - сотни Ом и более ее необходимо заменить. Низкая величина термо-ЭДС, формируемой термо­парой, может быть вызвана следующими причинами: - засорением форсунки запальника (вследствие этого, температура нагрева термопары может быть ниже номинальной). «Лечат» подобный дефект про­чисткой отверстия запальника любой мягкой прово­локой подходящего диаметра; - смещением положения термопары (естественно, она тоже может нагреваться недостаточно). Устраня­ют дефект следующим образом - ослабляют винт крепления подводки возле запальника и регулируют положение термопары (рис 10); - низким давлением газа на входе котла. Если ЭДС на выводах термопары в норме (при со­хранении признаков неисправности, указанных вы­ше), то проверяют следующие элементы: - целостность контактов в местах подключения термопары и датчика тяги. Окислившиеся контакты необходимо зачистить. Накидные гайки закручивают, что называется, «от ру­ки». В этом случае гаечный ключ применять нежела­тельно, так как можно легко порвать подходящие к контактам провода; - целостность обмотки электромагнита и, при не­обходимости, пропаивают ее выводы. Работоспособность электромагнита можно прове­рить следующим образом. Отсоединяют подводку термопары. Нажимают и удерживают пусковую кноп­ку, затем поджигают запальник. От отдельного источ­ника постоянного напряжения на освободившийся контакт электромагнита (от термопары) подают относительно корпуса напряжение около 1 В (при токе до 2 А). Для этого можно использовать и обычную батарейку (1,5 В), главное, чтобы она обеспечила необходимый рабочий ток. Теперь кнопку можно отпустить. Если запальник не погас, электромагнит и датчик тяги исправны; - датчик тяги. Вначале проверяют усилие прижатия контакта к биметаллической пластине (при указанных признаках неисправности часто оно бывает недостаточным). Для увеличения силы прижима освобождают стопорную гайку и перемещают контакт ближе к пластине, затем гайку затягивают. В этом случае никаких дополнительных регулировок не требуется - на температуру срабатывания датчика сила прижима не влияет. Датчик имеет большой запас по углу отклонения пластины, обеспечивая надежное разрывание электрической цепи в случае аварии.

СН 4 +2 × О 2 +7,52 × N 2 = СО 2 +2 × Н 2 О+7,5 × N 2 +8500 Ккал

Воздух:

,отсюда вывод:

на 1 м 3 О 2 приходится 3,76 м 3 N 2

При сжигании 1 м 3 газа необходимо затратить 9,52 м 3 воздуха, (т.к. 2+7,52). При полном сгорании газа выделяется:

· Углекислый газ СО 2 ;

· Пары воды;

· Азот (балласт воздуха);

· Выделяется теплота.

При сгораниии 1 м 3 газа выделяется 2 м 3 воды. Если температура отходящих дымовых газов в дымовой трубе меньше 120 О С и труба высокая неутеплённая, то эти пары воды конденсируются вдоль стенок дымовой трубы в её нижнюю часть, откуда через отверстие поступают в дренажную ёмкость или линию.

Чтобы исключить образование конденсата в дымовой трубе, необходимо утеплять трубу или уменьшить высоту дымовой трубы, предварительно просчитав тягу в трубе (т.е. уменьшать высоту трубы опасно).

Продукты полного сгорания газа.

· Углекислый газ;

· Пары воды.

Продукты неполного сгорания газа.

· Угарный газ СО;

· Водород Н 2 ;

· Углерод С.

В реальных условиях для сжигания газа подача воздуха несколько больше, чем рассчитано по формуле. Отношение действительного объёма воздуха, поданного на горение к теоретически рассчитанному объёму, называется коэффициентом избытка воздуха (a ). Он не должен быть более, чем 1,05…1,2:

Чрезмерно большой избыток воздуха снижает К.П.Д. котла.

По городу:

175 кг условного топлива тратится на выработку 1 Гкал тепла.

По промыслам:

162 кг условного топлива тратится на выработку 1 Гкал тепла.

Избыток воздуха определяется анализом дымовых газов прибором.

Коэффициент a по длине топочного пространства неодинаков. В начале топки у горелки , а при выходе дымовых газов в дымовую трубу он больше рассчётного за счёт подсосов воздуха через негерметичную обмуровку (обшивку) котла.

Данная информация относится к котлам, работающим под разряжением, когда давление в топке меньше атмосферного.

Котлы, работающие под избыточным давлением газов в топке котла, называются котлами, работающими под наддувом. В таких котлах обмуровка должна быть очень герметична, чтобы предотвратить попадание дымовых газов в котельную и отравление людей.