Ртуть какой металл. Ртуть: интересные факты

  • Дата: 29.09.2019

Свидетельствуют о том, что при пожаре в здании НИИ вакуумной техники произошла утечка ртути. В очаге пожара концентрация паров ртути превысила ПДК, но за пределами территории (а также на самой территории после работ по нейтрализации ртути) выхода за пределы нормативов не отмечено.

Для объективной картины и однозначного исключения (или подтверждения) крупномасштабного заражения ртутью необходимо провести не одно измерение, а несколько десятков, причем в разное время. Без таких данных можно лишь указать на то, что при действительно крупном выбросе концентрация ртути сильно отличалась бы в разных районах города. И если кто-то в 15 или 20 километрах от места пожара жалуется на симптомы отравления ртутью, то вблизи число отравившихся явно должно исчисляться тысячами человек: плотность населения в столице местами превышает 50 тысяч жителей на квадратный километр.

Иными словами, слухи о серьезной и угрожающей всем жителям утечке представляются крайне сомнительными. Московский воздух грязен, но вряд ли именно из-за ртути. Более того, проблемы со смогом начались задолго до пожара: запах гари пришел в город еще летом, и тогда дым приписали горящим в Тверской области торфяникам. Но раз уж зашла речь о ртути, мы решили сделать подборку из десяти утверждений про токсичность этого элемента.

1) Ртуть - чрезвычайно опасное вещество. Если случайно выпить каплю ртути, можно умереть сразу же.

Металлическая ртуть, вопреки расхожему мнению, не является ни сильнодействующим ядом, ни особо токсичным веществом. Достаточно сказать, что в медицинской литературе описан случай, когда пациент проглотил 220 грамм жидкого металла и выжил. Для сравнения: то же количество поваренной соли способно привести к летальному исходу (если, конечно, кто-то в состоянии съесть стакан соли). Подробный справочник в разделе «смертельные случаи» разбирает отравления хлоридом ртути, но не содержит ни одного упоминания смертельного отравления ртутью в виде чистого металла. Кроме того, ртуть использовалась и продолжает использоваться для производства зубных пломб на основе амальгамы, сплава ртути с другими металлами. Такие пломбы признаны достаточно безопасными и заменять без особой нужды амальгаму на другие материалы не рекомендуется.

Чистая ртуть в виде жидкости , пусть даже проглоченной, не особенно опасна. Но этого нельзя сказать ни про пары металла, ни тем более про соединения ртути.

2) Ртуть опасна, так как испаряется и дает токсичные пары.

Это действительно так. Пары ртути образуются там, где металл оказывается на открытом воздухе. Они не имеют ни запаха, ни цвета, ни - как правило - вкуса, хотя иногда люди и ощущают во рту металлический привкус. Постоянное вдыхание загрязненного воздуха приводит к попаданию ртути в организм через легкие, а это намного опаснее, чем проглатывание того же количества металла.

3) Если в квартире разбился градусник, надо тщательно подмести и вымыть пол.

Не только неверное, но и откровенно вредительское утверждение. При разделении одной капли на две вдвое же возрастает удельная площадь и, соответственно, скорость испарения вещества. Поэтому не надо пытаться смахнуть ртуть веником или тряпкой в совок, а потом выкинуть в мусорное ведро или спустить в унитаз. Часть металла при этом неизбежно вылетит наружу в виде мельчайших шариков, которые быстро испаряются и загрязняют воздух намного активнее исходной капли. И мы надеемся, что никто из читателей не будет собирать ртуть пылесосом: он не только дробит капли, но и подогревает их. Если уж у вас есть одна пролитая капля, то просто сгоните ее мокрой кисточкой в герметично закрывающуюся банку и потом сдайте в ДЕЗ (Дирекция единого заказчика; вначале лучше позвонить и уточнить, принимают ли. Рекомендация дана для России, в других странах правила могут отличаться). Можно использовать листочек бумаги или, если капля небольшая, маленькую спринцовку.

Американские исследователи, которые в 2008 году экспериментальное помещение ртутью, обнаружили что одна капля диаметром 4 миллиметра даже в небольшой комнате объемом 20 кубических метров спустя час дает всего 0,29 микрограмм ртутных паров на кубометр. Это значение находится в пределах действующей как в США, так и в России нормы для атмосферного загрязнения. Однако когда ртуть размазывали шваброй, концентрация ее паров вырастала до отметок свыше ста микрограмм на метр кубический. То есть в десять раз выше ПДК для промышленных помещений и в сотни раз выше «общеатмосферной» нормы! Влажная уборка, как показали эксперименты, после подметания ртути уже не спасает, и пол остается загрязнен тысячами мелких капель после многократной протирки мокрой тряпкой.

4) Если в квартире разбили градусник, то помещение на долгие годы становится опасным для жизни.

Это правда, но не всегда. Испарение металлической ртути через некоторое время замедляется из-за покрытия металла пленкой оксида ртути, поэтому закатившиеся в щели капли могут лежать годами и даже десятилетиями. В справочнике по криминалистике Environmental Forensics: Contaminant Specific Guide со ссылкой на несколько исследований говорится , что ртуть где-нибудь под полом или за плинтусом со временем перестает загрязнять атмосферу, но лишь при условии, что ее шарики там не подвергаются механическому воздействию. Если ртутный шарик попадает в щель между досками паркета, где его постоянно трясет при ходьбе, испарение будет продолжаться до тех пор, пока капля не испарится полностью. Трехмиллиметровый шарик, по оценкам физиков, в 2003 году, испаряется за три года.

5) Отравление ртутью проявляется сразу же.

Верно лишь для высокой концентрации ртути.

Острое отравление возникает при вдыхании на протяжении нескольких часов воздуха, в котором больше ста микрограмм на кубический метр. При этом серьезные (требующие госпитализации) последствия наступают при еще более высоких концентрациях. Чтобы серьезно отравиться ртутью, одного разбитого градусника недостаточно.

Для хронического отравления ртутью, если опираться на представленные в уже упомянутом Toxicological profile for mercury данные, необходима концентрация тяжелого металла как минимум свыше десяти микрограмм на кубометр. Это возможно в случае, если разбитый градусник смели метлой и не обезвредили ртуть, однако и в этом случае вряд ли обитатели комнаты почувствуют недомогание сразу же. Ртуть в сравнительно низких концентрациях приводит не к моментальной тошноте, слабости и лихорадке, а может, к примеру, вызвать нарушение координации движений и дрожь конечностей. У маленьких детей также может возникать сыпь, однако специфического набора симптомов, по которым даже неспециалист мог бы определить хроническое ртутное отравление, не существует.

6) Ртуть присутствует в рыбе и морепродуктах.

Правда. Чистая ртуть превращается некоторыми бактериями в метилртуть, а затем перемещается вверх по пищевой цепочке, причем в первую очередь это происходит в морских биосистемах. Последняя фраза означает, что вначале содержащий метилртуть планктон поедают рыбы, потом этих рыб съедают хищники (другие рыбы) и каждый раз концентрация метилртути в организмах растет за счет ее способности накапливаться в тканях животных. Проводившиеся океанологами исследования показали, что количество ртути при переходе от воды и растворенных в ней веществ к планктону возрастает в десятки или даже сотни тысяч раз.

Концентрация ртути в мясе тунца достигает 0,2 миллиграмма на килограмм. Загрязнение рыбы ртутью стало серьезной проблемой, решение которой требует согласованной работы экологов и представителей промышленности по всему миру. Однако для большинства жителей России, которые в принципе довольно редко едят рыбу (18 килограмм в год против 24 кг в США) этот источник ртути не столь уж существенен.

7) Если разбить флуоресцентную лампу, то она загрязнит комнату ртутью.

Правда. В 2004 году группа американских ученых ряд ламп внутри пластиковой бочки, которую сразу после этого закрыли крышкой. Опыт показал, что осколки медленно выделяют пары ртути и всего из остатков лампочки может выйти до сорока процентов содержащегося внутри токсичного металла.

Внутри большинства компактных ламп содержится около 5 миллиграммов ртути (есть марки с пониженным до одного миллиграмма количеством). Если учесть, что в первые сутки выделяется примерно половина из тех сорока процентов, которые в принципе могут покинуть осколки, то одна разбитая в комнате лампа превысит «атмосферный» ПДК в пять-десять раз, однако не выйдет за рамки «рабоче-промышленного» ПДК. Пролежавшие неделю осколки уже практически безвредны с точки зрения заражения воздуха парами ртути, так что из-за одной разбитой лампочки нельзя получить отравление ртутью.


Ртутная лампа под колпаком. Она использует пары ртути и дает излучение только на нескольких частотах (узкими полосами, если использовать спектроскопический термин). Эти частоты соответствуют ультрафиолету, синему, зеленому и оранжевому свету. Красного света ртутные пары практически не дают, потому в целом имеют зеленоватый оттенок. Снимок Famartin / Wikimedia.

Другое дело - разбить несколько десятков больших флуоресцентных ламп сразу. Такие действия, как показывает практика , приводят к острому отравлению ртутью.

8) Большинство жителей городов хронически отравлены ртутью.

Крайне сомнительное утверждение. Концентрация ртути в воздухе городов действительно выше, однако пока что нет никаких убедительных свидетельств того, что это приводит к каким-либо заболеваниям. В конце концов, ртуть попадает в атмосферу и в воду вблизи многих вулканов. Существуют разрабатываемые с античности месторождения, вблизи них построены целые и их жители не страдают поголовно от отравления.

Выявить негативное влияние как ртути, так и других веществ (или не веществ, а, скажем, микроволнового излучения от мобильных телефонов) в низких дозах довольно сложно. То, что проявляет себя только через много лет, требует долговременных наблюдений. Но за двадцать или тридцать лет у людей обычно проявляется множество заболеваний, значительная часть которых может быть никак не связана с подозреваемым веществом. Если наблюдать за несколькими десятками тысяч человек, то у некоторых из них в любом случае разовьются хронические болезни и даже злокачественные опухоли, без всякой связи с ртутью, радиацией или иным фактором. Даже общеизвестный в наши дни вред курения удалось выявить далеко не сразу: лишь ближе к середине прошлого столетия медики смогли однозначно связать курение с раком легких.


Кристаллы киновари в известняке. Фото JJ Harrison / Wikimedia.

Про хроническое отравление ртутью часто говорят представители «альтернативной медицины», но их нельзя считать объективными источниками. Многие из них одновременно продают те или иные «программы детоксикации», причем зачастую обещая исцелить якобы вызванные ртутью болезни вроде рака или аутизма. Официальная позиция американских медиков сейчас такова, что используемые для выведения ртути из организма препараты (так называемые хелатные соединения) здоровым людям скорее навредят, чем помогут. Описано минимум три случая смертельных отравлений вследствие попыток «очистить организм от ртути».

9) Ртуть содержится в вакцинах.

Ртуть входит в состав тиомерсала , используемого в некоторых вакцинных препаратах консерванта. Одна доза вакцины, как правило, содержит около 50 микрограммов вещества. Для сравнения: летальная доза этого же вещества (установленная в опытах на мышах) составляет 45 миллиграммов (45000 микрограммов) на килограмм массы тела. Одна порция рыбы может содержать примерно столько же ртути, сколько доза вакцины.

Тиомерсал обвиняли в росте числа случаев аутизма, однако еще в начале нулевых годов эта гипотеза была опровергнута анализом статистической информации. Кроме того, если предположить, что дело в ртути, то остается непонятным рост числа случаев аутизма в последние несколько десятилетий. Раньше люди контактировали с ртутью намного активнее.

10) Ртутное загрязнение - проблема последних десятилетий.

Это не так. Ртуть - один из древнейших известных человечеству металлов, равно как и киноварь, сульфид ртути. Киноварь активно использовалась в качестве красного красителя (в том числе для производства косметики!), ртуть же применялась в целом ряде процессов, от нанесения позолоты до выделки шляп. При золочении куполов Исаакиевского собора смертельные отравления ртутью получили шестьдесят мастеров, а выражение «безумный шляпник» отражает симптомы хронического отравления при выделке шкурок для мужских шапок. Вплоть до середины XX века при обработке шкур использовался токсичный нитрид ртути. Ртуть входила и в состав многих лекарств, причем в несопоставимых с тиомерсалом дозировках. Каломель, к примеру, является хлоридом ртути (I), и ее применяли как антисептик наряду с сулемой - хлоридом ртути (II).

В последние десятилетия использование ртути в медицине резко сократилось ввиду данных о токсичности этого металла. Встретить ту же каломель можно разве что в гомеопатических препаратах. Или в «народной» медицине - зафиксирован ряд отравлений ртутью после употребления препаратов китайской народной медицины.

Справка: почему ртуть ядовита?

Ртуть взаимодействует с селеном. Селен - это микроэлемент, который входит в состав тиоредоксинредуктазы, фермента, при помощи которого восстанавливается белок тиоредоксин. Тиоредоксин задействован во множестве жизненно важных процессов. В частности, тиоредоксин нужен для борьбы с повреждающими клетки свободными радикалами, в этом случае он работает в связке с витаминами C и E. Ртуть необратимо повреждает тиоредоксинредуктазу, и она перестает восстанавливать тиоредоксин. Тиоредоксина становится мало, и клетки в результате хуже справляются со свободными радикалами.

Атомный номер 80, атомная масса 200,59. В природе 7 стабильных изотопов: 196 Hg (0,14%), 198 Hg (10,02%), 199 Hg (16,84%), 200 Hg (23,13%), 201 Hg(13,22%), 202 Hg(29,8%), 204 Hg (6.85%). Известно более 24 радиоактивных изотопов ртути.

Среднее содержание ртути в земной коре 8,3.10 -6 % (по массе). Повышенные содержания ртути характерны для 4.10 -5 % (по массе). В земной коре ртуть преимущественно рассеяна, осаждается из горячих подземных вод , образуя . Главный рудный минерал ртутных руд — киноварь HgS, второстепенные — метациннабарит (b-сульфид Hg), самородная ртуть, ливингстонит (HgSb 4 S 7), кордероит (Hg 3 S 2 Cl 2), тиманит (HgSe), колорадоит (HgTe) и др.

Применение ртути

Ртуть широко применяется при изготовлении различных приборов (барометры, термометры, манометры, вакуумные насосы, нормальные элементы, полярографы и др.), в ртутных лампах, выпрямителях, как жидкий катод в производстве едких щелочей и хлора электролизом, в качестве катализатора при синтезе уксусной кислоты в металлургии для амальгамации золота и серебра. Гремучая ртуть используется в качестве детонатора, киноварь — как пигмент; органические соединения Hg — в сельском хозяйстве в качестве протравителя семян и гербицида и как компонент краски корпусов морских судов; препараты ртути — в медицине, главным образом благодаря их антисептическим и мочегонным свойствам.

Опасность ртути

Ртуть и её соединения токсичны , поэтому при работе с ними необходима предосторожность (полная герметизация аппаратуры). При хроническом отравлении ртутью и её препаратами поражается нервная система: наблюдаются лёгкая возбудимость, лёгкая дрожь отдельных частей тела, ослабление памяти. Отравление сказывается на слизистых оболочках полости рта, характерные признаки: металлический вкус во рту, разрыхление дёсен, сильное слюноотделение. Случайно пролитую в помещении ртуть необходимо собирать самым тщательным образом. Максимально допустимое содержание ртути в воздухе промышленных предприятий 0,00001 мг/л.

Ртуть - элемент побочной подгруппы второй группы, шестого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 80. Обозначается символом Hg (лат. Hydrargyrum ).

Ртуть - один из двух химических элементов (и единственный металл), простые вещества которых при нормальных условиях находятся в жидком агрегатном состоянии (второй элемент - бром). В природе находится как в самородном виде, так и образует ряд минералов.

История открытия ртути

Ртуть (англ. Mercury, франц. Mercure, нем. Quecksilber) входит в число семи металлов древности. Она была известна по крайней мере за 1500 лет до н.э., уже тогда ее умели получать из киновари. Ртуть употребляли в Египте, Индии, Месопотамии и Китае; она считалась важнейшим исходным веществом в операциях священного тайного искусства по изготовлению препаратов, продлевающих жизнь и именуемых пилюлями бессмертия. В IV - Ш вв. до н.э. о ртути как о жидком серебре (от греч. вода и серебро) упоминают Аристотель и Теофраст. Позднее Диоскорид описал получение ртути из киновари путем нагревания последней с углем. Ртуть считали основой металлов, близкой к золоту и поэтому называли меркурием (Mercurius), по имени ближайшей к солнцу (золоту) планеты Меркурий. С другой стороны, полагая, что ртуть представляет собой некое состояние серебра, древние люди именовали ее жидким серебром (откуда произошло лат. Hydrargirum). Подвижность ртути вызвала к жизни другое название - живое серебро (лат. Argentum vivum); немецкое слово Quecksilber происходит от нижнесаксонского Quick (живой) и Silber (серебро). Интересно, что болгарское обозначение ртути - живак - и азербайджанское - дживя - заимствованы, вероятно, от славян.

В эллинистическом Египте и у греков употреблялось название скифская вода, что позволяет думать о вывозе ртути в какой-то период времени из Скифии. В арабский период развития химии возникла ртутно-серная теория состава металлов, согласно которой ртуть почиталась матерью металлов, а сера (сульфур) их отцом. Сохранилось множество тайных арабских названий ртути, что свидетельствует о ее значении в алхимических тайных операциях. Усилия арабских, а позднее и западноевропейских алхимиков сводились к так называемой фиксации ртути, т. е. к превращению ее в твердое вещество. По мнению алхимиков, получающееся при этом чистое серебро (философское) легко превращалось в золото. Легендарный Василий Валентин (XVI в.) основал теорию трех начал алхимиков (Tria principia) - ртути, серы и соли; эту теорию развил затем Парацельс. В подавляющем большинстве алхимических трактатов, излагающих способы трансмутации металлов, ртуть стоит на первом месте либо как исходный металл для любых операций, либо как основа философского камня (философская ртуть).

Распространённость ртути в природе

Природные источники, такие как вулканы, составляют примерно половину всех выбросов атмосферной ртути. За оставшуюся половину ответственна деятельность человека. В ней основную долю составляют выбросы в результате сгорания угля главным образом в тепловых электростанциях - 65 %, добыча золота - 11 %, выплавка цветных металлов - 6.8 %, производство цемента - 6.4 %, утилизация мусора - 3 %, производство соды - 3 %, чугуна и стали - 1.4 %, ртути (в основном для батареек) - 1.1 %, остальное - 2 %.

Ртуть относительно редкий элемент в Земной коре со средней концентрацией 83 мг/т. Однако в виду того, что ртуть слабо связывается химически с наиболее распространёнными в земной коре элементами, ртутные руды могут быть очень концентрированными по сравнению с обычными породами.

Наиболее богатые ртутью руды содержат до 2.5 % ртути. Основная форма нахождения ртути в природе – рассеянная и только 0,02% её заключено в месторождениях. Содержание ртути в различных типах изверженных пород близки между собой (около 100 мг/т). Из осадочных пород максимальные концентрации ртути установлены в глинистых сланцах (до 200 мг/т). В водах Мирового океана содержание ртути 1 мкг/л. Важнейшей геохимической особенностью ртути является то, что среди других халькофильных элементов она обладает самым высоким потенциалом ионизации. Это определяет такие свойства ртути, как способность восстанавливаться до атомарной формы (самородной ртути), значительную химическую стойкость к кислороду и кислотам.

Есть свидетельства существования природного скопления ртути в виде маленького ртутного озера.

Ртуть присутствует в большинстве сульфидных минералов. Особенно высокие её содержания (до тысячных и сотых долей процента) устанавливаются в блёклых рудах, антимонитах, сфалеритах и реальгарах. Близость ионных радиусов двухвалентной ртути и кальция, одновалентной ртути и бария определяет их изоморфизм во флюоритах и баритах. В киновари и метациннабарите сера иногда замещается селеном или теллуром; содержание селена часто составляет сотые и десятые доли процента. Известны крайне редкие селениды ртути – тиманит (HgSe) и онофрит (смесь тиманита и сфалерита).

Ртуть является одним из наиболее чувствительных индикаторов скрытого оруденения не только ртутных, но и различных сульфидных месторождений, поэтому ореолы ртути обычно выявляются над всеми скрытыми сульфидными залежами и вдоль дорудных разрывных нарушений. Эта особенность, а также незначительное содержание ртути в породах, объясняются высокой упругостью паров ртути, возрастающей с увеличением температуры и определяющей высокую миграцию этого элемента в газовой фазе.

В поверхностных условиях киноварь и металлическая ртуть растворимы в воде даже при отсутствии сильных окислителей, но при их наличии (, озон, перекись водорода) растворимость этих минералов достигает десятков мг/л. Особенно хорошо растворяется ртуть в сульфидах едких щелочей с образованием, например, комплекса HgS nNa 2 S. Ртуть легко сорбируется глинами, гидроокислами железа и марганца, глинистыми сланцами и углями.

В природе известно около 20 минералов ртути, но главное промышленное значение имеет киноварь HgS (86,2% Hg). В редких случаях предметом добычи является самородная ртуть, метациннабарит HgS и блёклая руда – шватцит (до 17% Hg). На единственном месторождении Гуитцуко (Мексика) главным рудным минералом является ливингстонит HgSb 4 S 7 . В зоне окисления ртутных месторождений образуются вторичные минералы ртути. К ним относятся прежде всего самородная ртуть, реже метациннабарит, отличающиеся от таких же первичных минералов большей чистотой состава. Относительно распространена каломель Hg 2 Cl 2 . На месторождении Терлингуа (Техас) распространены и другие гипергенные галоидные соединения – терлингуаит Hg 2 ClO, эглестонит Hg 4 Cl.

Физические свойства ртути

Это единственный металл, жидкий при комнатной температуре. Обладает свойствами диамагнетика. Образует со многими металлами жидкие сплавы - амальгамы.

Ртуть в 13,6 раза тяжелее воды.

У него довольно большой коэффициент температурного расширения – всего в полтора раза меньше, чем у воды, и на порядок, а то и два больше, чем у обычных металлов.

Химические свойства ртути

Ртуть - малоактивный металл (см. ряд напряжений).

При нагревании до 300 °C ртуть вступает в реакцию с кислородом: 2Hg + O 2 → 2HgO Образуется оксид ртути(II) красного цвета. Эта реакция обратима: при нагревании выше 340 °C оксид разлагается до простых веществ. Реакция разложения оксида ртути исторически является одним из первых способов получения кислорода.

При нагревании ртути с серой образуется сульфид ртути(II).

Ртуть не растворяется в растворах кислот, не обладающих окислительными свойствами, но растворяется в царской водке и азотной кислоте, образуя соли двухвалентной ртути. При растворении избытка ртути в азотной кислоте на холоде образуется нитрат Hg 2 (NO 3) 2 .

Из элементов IIБ группы именно у ртути появляется возможность разрушения очень устойчивой 6d 10 - электронной оболочки, что приводит к возможности существования соединений ртути (+4). Так, кроме малорастворимого Hg 2 F 2 и разлагающегося водой HgF 2 существует и HgF 4 , получаемый при взаимодействии атомов ртути и смеси неона и фтора при температуре 4К .

Применение ртути

Ртуть применяется в изготовлении термометров, парами ртути наполняются ртутно-кварцевые и люминесцентные лампы. В них ртуть применяется как в чистом виде, так и в виде смесей с газами (в основном, с аргоном), для увеличения светоотдачи. Ртутные лампы используются в качестве источников интенсивного УФ излучения. Ртутные контакты служат датчиками положения. Кроме того, металлическая ртуть применяется для получения целого ряда важнейших сплавов.

Ранее различные амальгамы металлов, особенно амальгамы золота и серебра, широко использовались в ювелирном деле, в производстве зеркал и зубных пломб. В технике ртуть широко применялась для барометров и манометров. Соединения ртути использовались как антисептик (сулема), слабительное (каломель), в шляпном производстве и т.д., но в связи с её высокой токсичностью к концу XX века были практически вытеснены из этих сфер (замена амальгамирования на напыление и электроосаждение металлов, полимерные пломбы в стоматологии).

Также, ртуть широко применяется в производстве термометров. Температура плавления ртути - –38 градусов, кипения - +356.58. Но существуют способы расширить эти границы и производить термометры, работающие как при более низких, так и при более высоких температурах. Для понижения температуры плавления, в ртуть добавляют таллий.

Металлическая ртуть служит катодом для электролитического получения ряда активных металлов, хлора и щелочей, в некоторых химических источниках тока (например, ртутно-цинковых - тип РЦ), в эталонных источниках напряжения (Вестона элемент). Ртутно-цинковый элемент (эдс 1,35 Вольт) обладает очень высокой энергией по объёму и массе (130 Вт/час/кг, 550 Вт/час/дм).

Ртутью иногда легируют другие металлы. Небольшие добавки элемента увеличивают твердость сплава свинца со щелочноземельными металлами. Даже при паянии бывает подчас нужна ртуть: припой из 93% свинца, 3% олова и 4% ртути – лучший материал для пайки оцинкованных труб.

Ртуть используется для переработки вторичного алюминия и добычи золота (см. амальгамная металлургия).

Одна из главных деталей взрывателя для зенитного снаряда – это пористое кольцо из железа или никеля. Поры заполнены ртутью. Выстрел – снаряд двинулся, он приобретает все большую скорость, все быстрее вращается вокруг своей оси, и тяжелая ртуть выступает из пор. Она замыкает электрическую цепь – взрыв.

Ртуть используется в качестве балласта в подводных лодках и регулирования крена и дифферента некоторых аппаратов. Перспективно использование ртути в сплавах с цезием в качестве высокоэффективного рабочего тела в ионных двигателях.

Раньше ртутными красками покрывали днища кораблей, чтобы они не обрастали ракушками. Иначе корабль снижает скорость, расходуется больше топлива. Самая известная из красок такого типа делается на основе кислой ртутной соли мышьяковистой кислоты HgHAsO 4 . Правда, в последнее время для этой цели применяют и синтетические красители, в составе которых ртути нет.

Ртуть-203 (T 1/2 = 53 сек) используется в радиофармакологии. Медицина использует также фосфорнокислые соли ртути, ее сульфат, иодид и другие. В наше время большинство неорганических соединений ртути постепенно вытесняются из медицины ртутными же органическими соединениями, неспособными к легкой ионизации и поэтому не столь токсичными и меньше раздражающими ткани.

Также используются и соли ртути:

  • Иодид ртути используется как полупроводниковый детектор радиоактивного излучения.
  • Фульминат ртути («Гремучая ртуть») издавна применяется в качестве инициирующего ВВ (Детонаторы).
  • Бромид ртути применяется при термохимическом разложении воды на водород и кислород (атомно-водородная энергетика).

Некоторые соединения ртути применяются как лекарства (например, мертиолят для консервации вакцин), но в основном из-за токсичности ртуть была вытеснена из медицины (сулема, оксицианид ртути - антисептики, каломель - слабительное и др.) в середине-конце XX века.

Применение соединений ртути

Амальгамы из ртути

Еще одно замечательное свойство ртути: способность растворять другие металлы, образуя твердые или жидкие растворы – амальгамы. Некоторые из них, например амальгамы серебра и кадмия, химически инертны и тверды при температуре человеческого тела, но легко размягчаются при нагревании. Из них делают зубные пломбы.

Амальгаму таллия, затвердевающую только при –60°C, применяют в специальных конструкциях низкотемпературных термометров.

Старинные зеркала были покрыты не тонким слоем серебра, как это делается сейчас, а амальгамой, в состав которой входило 70% олова и 30% ртути, В прошлом амальгамация была важнейшим технологическим процессом при извлечении золота из руд. В XX столетии она не выдержала конкуренции и уступила более совершенному процессу – цианированию.

Некоторые металлы, в частности железо, кобальт, никель, практически не поддаются амальгамации. Это позволяет транспортировать жидкий металл в емкостях из простой стали. (Особо чистую ртуть перевозят в таре из стекла, керамики или пластмассы.) Кроме железа и его аналогов, не амальгамируются тантал, кремний, рений, вольфрам, ванадий, бериллий, титан, марганец и молибден, то есть почти все металлы, применяемые для легирования стали. Это значит, что и легированной стали ртуть нестрашна.

Зато натрий, например, амальгамируется очень легко. Амальгама натрия легко разлагается водой. Эти два обстоятельства сыграли и продолжают играть очень важную роль в хлорной промышленности.

При выработке хлора и едкого натра методом электролиза поваренной соли используют катоды из металлической ртути. Для получения тонны едкого натра нужно от 125 до 400 г элемента №80. Сегодня хлорная промышленность – один из самых массовых потребителей металлической ртути.

Киноварь – красная ртуть

Киноварь HgS. Благодаря ей человек познакомился с ртутью много веков назад. Способствовали этому и ее ярко-красный цвет, и простота получения ртути из киновари. Кристаллы киновари иногда бывают покрыты тонкой свинцово-серой пленкой. Это – метациннабарит, о нем ниже. Достаточно, однако, провести по пленке ножом, и появится ярко-красная черта.

В природе сернистая ртуть встречается в трех модификациях, отличающихся кристаллической структурой. Помимо общеизвестной киновари с плотностью 8,18, существуют еще и черный метациннабарит с плотностью 7,7 и так называемая бета-киноварь (ее плотность 7,2). Русские мастера, приготовляя в старину из киноварной руды красную краску, особое внимание обращали на удаление из руды «искр» и «звездочек». Они не знали, что это аллотропические изменения той же самой сернистой ртути; при нагревании без доступа воздуха до 386°C эти модификации превращаются в «настоящую» киноварь.

Некоторые соединения ртути меняют окраску при изменении температуры. Таковы красная окись ртути HgO и медно-ртутный иодид HgI 2 · 2CuI.

Токсичность ртути

Пары ртути, а также металлическая ртуть очень ядовиты, могут вызвать тяжёлое отравление. Ртуть и её соединения (сулема, каломель, цианид ртути) поражают нервную систему, печень, почки, желудочно-кишечный тракт, при вдыхании - дыхательные пути (а проникновение ртути в организм чаще происходит именно при вдыхании её паров, не имеющих запаха). По классу опасности ртуть относится к первому классу (чрезвычайно опасное химическое вещество). Опасный загрязнитель окружающей среды, особенно опасны выбросы в воду, поскольку в результате деятельности населяющих дно микроорганизмов происходит образование растворимой в воде и токсичной метилртути.

В ряде стран каломель используется в качестве слабительного. Токсическое действие каломели проявляется особенно тогда, когда после приема её внутрь не наступает слабительное действие и организм долгое время не освобождается от этого препарата.

Хлорид ртути (II), который называется сулема, является очень токсичным. Токсичность нитрата ртути (II) примерно такая же, как и токсичность сулемы.

Предельно допустимые уровни загрязнённости металлической ртутью и её парами:

  • ПДК в населенных пунктах (среднесуточная) - 0,0003 мг/м³
  • ПДК в жилых помещениях (среднесуточная) - 0,0003 мг/м³
  • ПДК воздуха в рабочей зоне (макс. разовая) - 0,01 мг/м³
  • ПДК воздуха в рабочей зоне (среднесменная) - 0,005 мг/м³
  • ПДК сточных вод (для неорганических соединений в пересчёте на двухвалентную ртуть) - 0,005 мг/мл
  • ПДК водных объектов хозяйственно-питьевого и культурного водопользования, в воде водоемов - 0,0005 мг/л
  • ПДК рыбохозяйственных водоемов - 0,00001 мг/л
  • ПДК морских водоемов - 0,0001 мг/л
  • ПДК в почве - 2,1 мг/кг

Мировое производство ртути

Месторождения ртути известны более чем в 40 странах мира. Мировые ресурсы ртути оцениваются в 715 тыс т количественно учтенные запасы - в 324 тыс. т., из которых 26% сосредоточено в Испании, по 13% в Киргизии и России, 8% - в Украине, примерно по 5-6,5% - в Словакии, Словении, Китае, Алжире, Марокко, Турции. Обеспеченность запасами ртути максимального уровня ее потребления, достигнутого в 1990-е годы, составляет для мира около 80 лет. С начала 1970-х гг. из-за экологических факторов конъюнктура рынка ртути стала заметно ухудшаться. Если в начале 1970-х гг. мировое производство первичной ртути (добыча на рудниках и плавка) оценивалось на уровне 10000 т в год, то к концу 1980-х гг. оно уменьшилось более чем в два раза. Это сопровождалось снижением цен на ртуть: с 11 -12 тыс. долларов США за 1 т в 1980-1982 гг. до 4-5 тыс. долларов в 1994-1996 гг.

Мировое производство ртути в 2009 году составило уже 3049 т, а

выявленные ресурсы ртути оцениваются в 675 тыс. т (главным образом в

Испании, Италии, Югославии, Киргизии, на Украине и в России).

Крупнейшие производители ртути – Испания (1497 т), Китай (550 т), Алжир

(290 т), Мексика (280 т), Кыргызстан(270т) и др.

История производства ртути в России

Первые сведения об организации ртутного производства в России относятся к 1725 г., согласно которым купец Петр Анисимов завел ртутную фабрику, причем источники сырья он держал в секрете. Добыча ртутной руды (киновари) в России началась в 1759 г. на Ильдиканском месторождении в Забайкалье и в незначительных объемах продолжалась (периодически) до 1853 г. В конце XIX – начале ХХ вв. киноварь в небольших количествах добывалась из аллювиальных россыпей в Амурской области. Примерно в это же время осуществлялась отработка отдельных участков ртутных месторождений Бирксуйского рудного поля (Южная Фергана) и месторождения Хпек (Южный Дагестан). В 1879 г. было открыто Никитовское ртутное месторождение (Донбасс), эксплуатация которого (одновременно с выплавкой металла) началась в 1887 г. В 1887-1908 гг. годовое производство ртути на Никитовском руднике варьировалось в пределах 47,3-615,9 т). Расчеты, основанные на данных, показывают, что с 1887 по 1917 г. здесь было получено 6762 т металлической ртути, существенная часть которой шла на экспорт (с 1889 г. по 1907 г. за границу было вывезено более 5145 т ртути). В начале ХХ в. Россия также импортировала киноварь и ртуть . Например, в 1913 г. в страну было ввезено 56 т киновари и 168 т ртути, в 1914 г. – 41 т киновари и 129 т ртути. В 1900-1908 гг. потребление ртути в России колебалось в пределах 49-118 т/год. В это время ртуть применялась в медицине и фармацевтике, при изготовлении зеркал и красок, при производстве термометров, барометров, манометров и других приборов, использовалась для натирания подушек электрических машин, извлечения золота и серебра амальгамным способом, золочения меди и бронзы, очистки войлока, в золотошвейном деле и лабораторной практике.

    Ртуть (Hg , от лат. Hydrargyrum ) - элемент шестого периода периодической системы химических элементов Д. И. Менделеева с атомным номером 80, относящийся к подгруппе цинка (побочной подгруппе II группы). Простое вещество ртуть - переходный металл, при комнатной температуре представляющий собой тяжёлую серебристо-белую жидкость, пары которой чрезвычайно ядовиты. Ртуть - один из двух химических элементов (и единственный металл), простые вещества которых при нормальных условиях находятся в жидком агрегатном состоянии (второй такой элемент - бром).


1 История

Происхождение названия

2 Нахождение в природе

2.1 Месторождения

3 В окружающей среде

4 Изотопы

5 Получение

6 Физические свойства

7 Химические свойства

7.1 Характерные степени окисления

7.2 Свойства металлической ртути

8 Применение ртути и её соединений

8.1 Медицина

8.2 Техника

8.3 Металлургия

8.4 Химическая промышленность

8.5 Сельское хозяйство

9 Токсикология ртути

9.1 Гигиеническое нормирование концентраций ртути

9.2 Демеркуризация

История

Астрономический символ планеты Меркурий

Ртуть известна с древних времен. Нередко её находили в самородном виде (жидкие капли на горных породах), но чаще получали обжигом природнойкиновари. Древние греки и римляне использовали ртуть для очистки золота (амальгамирование), знали о токсичности самой ртути и её соединений, в частности сулемы. Много веков алхимики считали ртуть главной составной частью всех металлов и полагали, что если жидкой ртути возвратить твердость при помощи серы или мышьяка, то получится золото. Выделение ртути в чистом виде было описано шведским химиком Георгом Брандтом в 1735 г. Для представления элемента как у алхимиков, так и в нынешнее время используется символ планеты Меркурий. Но принадлежность ртути к металлам была доказана только трудами Ломоносова и Брауна, которые в декабре 1759 года смогли заморозить ртуть и установить её металлические свойства: ковкость, электропроводность и др.

Происхождение названия

Русское название ртути происходит от праслав. *rьt ǫ , связанного с лит. rìsti «катиться» . Символ Hg заимствован от латинского алхимического названия этого элемента hydrargyrum (отдр.-греч. ὕδωρ «вода» и ἄργυρος «серебро»).

Нахождение в природе

Ртуть - относительно редкий элемент в земной коре со средней концентрацией 83 мг/т. Однако ввиду того, что ртуть слабо связывается химически с наиболее распространёнными в земной коре элементами, ртутные руды могут быть очень концентрированными по сравнению с обычными породами. Наиболее богатые ртутью руды содержат до 2,5 % ртути. Основная форма нахождения ртути в природе - рассеянная, и только 0,02 % её заключено в месторождениях. Содержание ртути в различных типах изверженных пород близки между собой (около 100 мг/т). Из осадочных пород максимальные концентрации ртути установлены в глинистых сланцах (до 200 мг/т). В водах Мирового океана содержание ртути - 0,1 мкг/л. Важнейшей геохимической особенностью ртути является то, что среди других халькофильных элементов она обладает самым высоким потенциалом ионизации. Это определяет такие свойства ртути, как способность восстанавливаться до атомарной формы (самородной ртути), значительную химическую стойкость к кислороду и кислотам.

Ртуть присутствует в большинстве сульфидных минералов. Особенно высокие её содержания (до тысячных и сотых долей процента) устанавливаются в блёклых рудах, антимонитах, сфалеритах и реальгарах. Близость ионных радиусов двухвалентной ртути и кальция, одновалентной ртути и бария определяет их изоморфизм во флюоритах и баритах. В киновари и метациннабарите сера иногда замещается селеном или теллуром; содержание селена часто составляет сотые и десятые доли процента. Известны крайне редкие селениды ртути - тиманит (HgSe) и онофрит (смесь тиманита и сфалерита).

Ртуть является одним из наиболее чувствительных индикаторов скрытого оруденения не только ртутных, но и различных сульфидных месторождений, поэтому ореолы ртути обычно выявляются над всеми скрытыми сульфидными залежами и вдоль дорудных разрывных нарушений. Эта особенность, а также незначительное содержание ртути в породах, объясняются высокой упругостью паров ртути, возрастающей с увеличением температуры и определяющей высокую миграцию этого элемента в газовой фазе.

В поверхностных условиях киноварь и металлическая ртуть не растворимы в воде, но при их наличии (Fe 2 (SO 4) 3 , озон, пероксид водорода) растворимость этих минералов достигает десятков мг/л. Особенно хорошо растворяется ртуть в сульфидах едких щелочей с образованием, например, комплекса HgS nNa 2 S. Ртуть легко сорбируется глинами, гидроокислами железа и марганца, глинистыми сланцами и углями .

В природе известно около 20 минералов ртути, но главное промышленное значение имеет киноварь HgS (86,2 % Hg). В редких случаях предметом добычи является самородная ртуть, метациннабарит HgS и блёклая руда - шватцит (до 17 % Hg). На единственном месторождении Гуитцуко (Мексика) главным рудным минералом является ливингстонит HgSb 4 S 7 . В зоне окисления ртутных месторождений образуются вторичные минералы ртути. К ним относятся, прежде всего, самородная ртуть, реже метациннабарит, отличающиеся от таких же первичных минералов большей чистотой состава. Относительно распространена каломель Hg 2 Cl 2 . На месторождении Терлингуа (Техас) распространены и другие гипергенные галоидные соединения - терлингуаит Hg 2 ClO, эглестонит Hg 4 Cl.

Вряд ли нужно доказывать, что ртуть - металл своеобразный. Это очевидно хотя бы потому, что ртуть - единственный металл, находящийся в жидком состоянии в условиях, которые мы называем нормальными. Почему ртуть жидкая - вопрос особый. Но именно это свойство, вернее сочетание свойств металла и жидкости (самой тяжелой жидкости!), определило особое положение элемента № 80 в нашей жизни. О ртути можно рассказывать много: жидкому металлу посвящены десятки книг. Этот же рассказ - в основном о многообразии применения ртути и ее соединений.
Причастность ртути к славному клану металлов долгое время была под сомнением. Даже Ломоносов колебался, можно ли считать ртуть металлом, несмотря на то, что и в жидком состоянии она обладает почти полным комплексом металлических свойств: тепло- и электропроводностью, металлическим блеском и так далее. При охлаждении ртути до - 39°С становится совсем очевидным, что она - одно из «светлых тел, которые ковать можно».

Свойства ртути

Ртуть оказала науке огромные услуги . Как знать, насколько задержался бы прогресс техники и естественных наук без измерительных приборов - термометров, манометров, барометров и других, действие которых основано на необыкновенных свойствах ртути. Какие это свойства?

  • Во-первых, ртуть - жидкость.
  • Во-вторых, тяжелая жидкость - в 13,6 раза тяжелее воды.
  • В-третьих, у нее довольно большой коэффициент температурного расширения - всего в полтора раза меньше, чем у воды, и на порядок, а то и два больше, чем у обычных металлов.

Есть и «в-четвертых», «в-пятых», «в-двадцатых», но вряд ли нужно перечислять все.
Еще любопытная деталь: «миллиметр ртутного столба» - не единственная физическая единица, связанная с элементом № 80. Одно из определений ома, единицы электрического сопротивления, - это сопротивление столбика ртути длиной 106,3 см и сечением 1 мм 2 .
Все это имеет отношение не только к чистой науке. Термометры, манометры и другие приборы, «начиненные» ртутью, давно стали принадлежностью не только лабораторий, но и заводов. А ртутные лампы, ртутные выпрямители! Все то же уникальное сочетание свойств открыло ртути доступ в самые разные отрасли техники, в том числе в радиоэлектронику, в автоматику.
Ртутные выпрямители, например, долгое время были наиболее важным и мощным, наиболее широко применяемым в промышленности типом выпрямителей электрического тока. До сих пор их используют во многих электрохимических производствах и на транспорте с электрической тягой, хотя в последние годы их постепенно вытесняют более экономичные и безвредные полупроводниковые выпрямители.
Современная боевая техника тоже использует замечательные свойства жидкого металла.
К примеру, одна из главных деталей взрывателя для зенитного снаряда - это пористое кольцо из железа или никеля. Поры заполнены ртутью. Выстрел - снаряд двинулся, он приобретает все большую скорость, все быстрее вращается вокруг своей оси, и тяжелая ртуть выступает из пор. Она замыкает электрическую цепь - взрыв.
Нередко с нею можно встретиться и там, где меньше всего ожидаешь. Иногда ею легируют другие металлы. Небольшие добавки элемента № 80 увеличивают твердость сплава свинца со щелочноземельными металлами. Даже при паянии бывает подчас нужна ртуть: припой из 93% свинца, 3% олова и 4% ртути - лучший материал для пайки оцинкованных труб.

Амальгамы ртути

Еще одно замечательное свойство ртути: способность растворять другие металлы, образуя твердые или жидкие растворы - амальгамы. Некоторые из них, например амальгамы серебра и кадмия , химически инертны и тверды при температуре человеческого тела, но легко размягчаются при нагревании. Из них делают зубные пломбы.
Амальгаму таллия , затвердевающую только при -60°С, применяют в специальных конструкциях низкотемпературных термометров.
Старинные зеркала были покрыты не тонким слоем серебра, как это делается сейчас, а амальгамой, в состав которой входило 70% олова и 30% ртути. В прошлом амальгамация была важнейшим технологическим процессом при извлечении золота из руд. В XX столетии она не выдержала конкуренции и уступила более совершенному процессу - цианированию. Однако старый процесс находит применение и сейчас, главным образом при извлечении золота, топко вкрапленного в руду.
Некоторые металлы, в частности железо, кобальт, никель , практически не поддаются амальгамации. Это позволяет транспортировать жидкий металл в емкостях из простой стали. (Особо чистую ртуть перевозят в таре из стекла, керамики или пластмассы.) Кроме железа и его аналогов, не амальгамируются тантал , кремний , рений , вольфрам , ванадий , бериллий , титан , марганец и молибден , то есть почти все металлы, применяемые для легирования стали. Это значит, что и легированной стали ртуть нестрашна.
Зато натрий, например, амальгамируется очень легко. Амальгама натрия легко разлагается водой. Эти два обстоятельства сыграли и продолжают играть очень важную роль в хлорной промышленности.
При выработке хлора и едкого натра методом электролиза поваренной соли используют катоды из металлической ртути. Для получения тонны едкого натра нужно от 125 до 400 г элемента № 80. Сегодня хлорная промышленность - один из самых массовых потребителей металлической ртути.

  • ПЕРВЫЙ СВЕРХПРОВОДНИК. Спустя почти полтора столетия после опытов Пристли и Лавуазье Hg оказалась сопричастна еще к одному выдающемуся открытию, на этот раз в области физики. В 1911 г. голландский ученый Гейке Камерлинг-Оннес исследовал электропроводность ртути при низкой температуре. С каждым опытом он уменьшал температуру, и когда она достигла 4,12 К, сопротивление ртути, до этого последовательно уменьшавшееся, вдруг исчезло совсем: электрический ток проходил по ртутному кольцу, не затухая. Так было открыто явление сверхпроводимости, и элемент №80 стал первым сверхпроводником. Сейчас известны десятки сплавов и чистых металлов, приобретающих это свойство при температуре, близкой к абсолютному нулю.
  • КАК ОЧИСТИТЬ Hg. В химических лабораториях часто возникает необходимость очистить жидкий металл. Метод, описанный в этой заметке, пожалуй, самый простой из надежных и самый надежный из простых. На штативе крепят стеклянную трубку диаметром 1-2 см; нижний конец трубки оттянут и загнут. В трубку заливают разбавленную азотную кислоту примерно с 5% нитрата закисной ртути Hg 2 (N0 3) 2 . Сверху в трубку вставляют воронку с бумажным фильтром, в дне которого иголкой проделано небольшое отверстие. Воронку заполняют загрязненной ртутью. На фильтре она очищается от механических примесей, а в трубке - от большей части растворенных в ней металлов. Как это происходит? Ртуть - благородный металл, и примеси, например медь , вытесняют ее из Hg 2 (N0 3) 2 ; часть примесей просто растворяется кислотой. Очищенная ртуть собирается в нижней части трубки и под действием собственной тяжести передавливается в приемный сосуд. Повторив эту операцию несколько раз, можно достаточно полно очистить ее от примеси всех металлов, стоящих в ряду напряжений левее ртути.

Очистить ртуть от благородных металлов, например золота и серебра , намного сложнее. Чтобы разделить их, применяют перегонку в вакууме.

  • ЧЕМ-ТО ПОХОЖА НА ВОДУ. Не только жидкое состояние «роднит» ее с водой. Теплоемкость ртути, как и воды, с ростом температуры (от точки плавления до +80°С) последовательно уменьшается и лишь после определенного температурного «порога» (после 80°С) начинает медленно расти. Если охлаждать элемент №80 очень медленно, ее, как и воду, можно переохладить. В переохлажденном состоянии жидкая ртуть существует при температуре ниже - 50° Ct обычно же она замерзает при - 38,9°С. Кстати, впервые он была заморожена в 1759 г. петербургским академиком И.А. Брауном.
  • ОДНОВАЛЕНТНОЙ РТУТИ НЕТ! Это утверждение многим покажется неверным. Ведь еще в школе учат, что, подобно меди, ртуть может проявлять валентности +2 и 1+ . Широко известны такие соединения, как черная закись Hg 2 0 или каломель Hg 2 Cl 2 . Но Hg здесь лишь формально одновалентна. Как показали исследования, во всех подобных соединениях содержится группировка из двух атомов ртути: -Hg 2 - или -Hg-Hg-. Оба атома двухвалентны, но одна валентность каждого из них затрачена на образование цепочки, подобной углеродным цепям многих органических соединений. Ион Hg 2 +2 нестоек, нестойки и соединения, в которые он входит, особенно гидроокись и карбонат закисной ртути. Последние быстро разлагаются на Hg и HgO и соответственно Н 2 0 или С0 2 .

ЯД И ПРОТИВОЯДИЕ.
Я худшую смерть предпочту работе на ртутных рудниках, где крошатся зубы во рту...
Р. Киплинг
Пары ртути и ее соединения действительно весьма ядовиты. Жидкая ртуть опасна прежде всего своей летучестью: если хранить ее открытой в лабораторном помещении, то в воздухе создастся парциальное давление ртути 0,001. Это много, тем более что предельно допустимая концентрация ртути в промышленных помещениях 0,01 мг на кубический метр воздуха.
Степень токсического действия металлической ртути определяется прежде всего тем, какое количество успело прореагировать в организме, прежде чем ее вывели оттуда, т. е. опасна не сама ртуть, а ее соединения.
Острое отравление солями ртути проявляется в расстройстве кишечника, рвоте, набухании десен. Характерен упадок сердечной деятельности, пульс становится редким и слабым, возможны обмороки. Первое, что необходимо сделать в такой ситуации, это вызнать у больного рвоту. Затем дать ему молока и яичных белков. Она выводится из организма в основном почками. При хроническом отравлении Hg и ее соединениями появляются металлический привкус во рту, рыхлость десен, сильное слюнотечение, легкая возбудимость, ослабление памяти. Опасность такого отравления есть во всех помещениях, где Hg находится в контакте с воздухом. Особенно опасны мельчайшие капли разлитой ртути, забившиеся под плинтусы, линолеум, мебель, в щели пола. Общая поверхность маленьких ртутных шариков велика, и испарение идет интенсивнее. Поэтому случайно разлитую Hg необходимо тщательно собрать. Все места, в которых могли задержаться малейшие капельки жидкого металла, необходимо обработать раствором FeCl 3 , чтобы связать ртуть химически.

  • Космические аппараты нашего времени требуют значительных количеств электроэнергии. Регулировка работы двигателей, связь, научные исследования, работа системы жизнеобеспечения - все это требует электричества... Пока основными источниками тока служат аккумуляторы и солнечные батареи. Энергетические потребности космических аппаратов растут и будут расти. Космическим кораблям недалекого будущего понадобятся электростанции на борту. В основе одного из вариантов таких станций - ядерный турбинный генератор. Во многом он подобен обычной тепловой электростанции, но рабочим телом в нем служит не водяной пар, а ртутный. Разогревает его радиоизотопное горючее. Цикл работы такой установки замкнутый: ртутный пар, пройдя турбину, конденсируется и возвращается в бойлер, где опять нагревается и вновь отправляется вращать турбину.
  • ИЗОТОПЫ. Природный элемент состоит из смеси семи стабильных изотопов с массовыми числами 196, 198. 199, 200, 201, 202 и 204. Наиболее распространен самый тяжелый изотоп: его доля - почти 30%, точнее, 29,8. Второй по распространенности - изотоп ртуть-200 (23,13%). А меньше всего в природной смеси ртути-190 - всего 0,146%.

Из радиоактивных изотопов элемента № 80, а их известно 23, практическое значение приобрели только ртуть-203 (период полураспада 46,9 суток) и ртуть-205 (5,5 минуты). Их применяют при аналитических определениях ртути и изучении ее поведения в технологических процессах.

  • САМЫЕ КРУПНЫЕ МЕСТОРОЖДЕНИЯ - В ЕВРОПЕ. Это - один из немногих металлов, крупнейшие месторождения которых находятся на европейском материке. Наиболее крупными месторождениями ртути считаются Альмаден (Испания), Монте-Амьята (Италия) и Идрия (Югославия).
  • ИМЕННЫЕ РЕАКЦИИ. Для химической промышленности она и сейчас достаточно важна не только как материал катодов в производстве хлора и едкого натра, но и как катализатор. Например, из ацетилена по реакции М.Г. Кучерова, открытой в 1881 г., получается ацетальдегид. Катализатором здесь служит ртутьсодержащая соль, например сульфат HgS0 4 . А вот при растворении отработавших свое урановых блоков как катализатор использовали саму ртуть. Реакция Кучерова - не единственная «именная» реакция с участием ртути или ее соединений. Широко известна и реакция А.Н. Несмеянова, в ходе которой в присутствии солей ртути происходит разложение органических солей диазония и образование ртутьорганических соединений. Они используются в основном для получения других элементоорганических соединений и, ограничено, как фунгициды.

Влияние на эмоции. Она действует на организм в целом и, конечно, на психику. Высказано предположение, что ртутная интоксикация способна вызвать вспышки необузданного гнева. Иван Грозный, например, часто пользовался ртутными мазями против боли в суставах и, возможно, его повышенная возбудимость - результат отравления ртутью? Медики достаточно досконально изучили симптомы ртутного отравления, в том числе и психофизические: ощущение надвигающейся катастрофы, бред, галлюцинации... Паталогоанатомы, исследовавшие прах грозного царя, отметили повышенное содержание ртути в костях.