Таблица сравнительная характеристика фаз фотосинтеза. Процесс фотосинтез: кратко и понятно и для детей

  • Дата: 26.09.2019

Фотосинтез – синтез органических веществ из углекислого газа и воды с обязательным использованием энергии света: 6СО 2 +6Н 2 О + Q света →С 6 Н 12 О 6 +6О 2 . Фотосинтез – сложный многоступенчатый процесс; реакции фотосинтеза подразделяют на две группы: реакции световой фазы и реакции темновой фазы.

Световая фаза . Происходит только в присутствии света в мембранах тилакоидов при участии хлорофилла, белков-переносчиков электронов и фермента – АТФ-синтетазы. Под действием кванта света электроны хлорофилла возбуждаются, покидают молекулу и попадают на внешнюю сторону мембраны тилакоида, которая в итоге заряжается отрицательно. Окисленные молекулы хлорофилла восстанавливаются, отбирая электроны у воды, находящеёся во внутритилакоидном пространстве. Это приводит к распаду и фотолизу воды: Н 2 О+ Q света →Н + +ОН - . Ионы гидроксида отдают свои электроны, превращаясь в реакционноспособные радикалы ∙ОН: ОН - →∙ОН+е - . Радикалы ∙ОН объединяются, образуя воду и свободный кислород: 4НО∙→ 2Н 2 О+О 2 . Кислород при этом удаляется во внешнюю среду, а протоны накапливаются внутри тилакоида в «протонном резервуаре». В результате мембрана тилакоида с одной стороны за счет Н + заряжается положительно, с другой за счет электронов – отрицательно. Когда разность потенциалов между наружной и внутренней сторонами мембраны тилакоида достигает 200мВ, протоны проталкиваются через каналы АТФ-синтетазы и происходит фосфорилирование АДФ до АТФ; атомарный водород идёт на восстановление специфицеского переносчика НАДФ + до НАДФ∙Н 2: 2Н + +2 е - + НАДФ→ НАДФ∙Н 2 . Таким образом, в световую фазу происходит фотолиз воды, который сопровождается тремя важнейшими процессами: 1)синтез АТФ; 2) образование НАДФ∙Н 2 ; 3) образование кислорода. Кислород диффундирует в атмосферу, АТФ и НАДФ∙Н 2 транспортируются в строму хлоропласта и участвуют в процессах темновой фазы.

Темновая фаза . Происходит в строме хлоропласта. Для её реакций нужна энергия света, поэтому они происходят не только на свету, но и в темноте. Реакции темновой фазы представляют цепочку последовательных преобразований углекислого газа (из воздуха), приводящую к образованию глюкозы и других органических веществ. Сначала происходит фиксация СО 2 , акцептором является сахар рибулозобифосфат, катализируется рибулозобифосфаткарбоксилазой. В результате карбоксилирования рибулозобифосфата образуется неустойчивое шестиуглеродное соединение, которое сразу же распадается на две молекулы фосфоглицериновой кислоты. Затем происходит цикл реакций, в которых через ряд промежуточных продуктов ФГК преобразуется в глюкозу. Используется энергия АТФ и и НАДФ·Н 2 образованых в световую фазу. (Цикл Кальвина).

23. Реакции ассимиляции со2 в темновой фазе фотосинтеза.

Цикл Кальвина – главный путь ассимиляции СО 2 . Фаза декарбоксилирования - углекислый газ, связываясь с рибулозобифосфатом, образует две молекулы фосфоглицерата. Эту реакцию катализирует рибулозобифосфат карбосилаза.

Фотосинтез представляет собой совокупность процессов формирования световой энергии в энергию химических связей органических веществ с участием фотосинтетических красящих веществ.

Такой тип питания характерен для растений, прокариот и некоторых видов одноклеточных эукариот.

При природном синтезе углерод и вода во взаимодействии со светом преобразуются в глюкозу и свободный кислород:

6CO2 + 6H2O + световая энергия → C6H12O6 + 6O2

Современная физиология растений под понятием фотосинтеза понимает фотоавтотрофную функцию, которая является совокупностью процессов поглощения, превращения и применения квантов световой энергии в разных несамопроизвольных реакциях, включая преобразование углекислого газа в органику.

Фазы

Фотосинтез у растений происходит в листьях через хлоропласты - полуавтономные двухмембранные органеллы, относящиеся к классу пластид. С плоской формой листовых пластин обеспечивается качественное поглощение и полное использование световой энергии и углекислого газа. Вода, необходимая для природного синтеза, поступает от корней через водопроводящую ткань. Газообмен происходит с помощью диффузии через устьица и частично через кутикулу.

Хлоропласты заполнены бесцветной стромой и пронизаны ламеллами, которые при соединении друг с другом образуют тилакоиды. Именно в них и происходит фотосинтез. Цианобактерии сами собой представляют хлоропласты, поэтому аппарат для природного синтеза в них не выделен в отдельную органеллу.

Фотосинтез протекает при участии пигментов , которыми обычно выступают хлорофиллы. Некоторые организмы содержат другой пигмент - каротиноид или фикобилин. Прокариоты обладают пигментом бактериохлорофиллом, причем данные организмы не выделяют кислород по завершении природного синтеза.

Фотосинтез проходит две фазы - световую и темновую. Каждая из них характеризуется определенными реакциями и взаимодействующими веществами. Рассмотрим подробнее процесс фаз фотосинтеза.

Световая

Первая фаза фотосинтеза характеризуется образованием высокоэнергетических продуктов, которыми являются АТФ, клеточный источник энергии, и НАДФ, восстановитель. В конце стадии в качестве побочного продукта образуется кислород. Световая стадия происходит обязательно с солнечным светом.

Процесс фотосинтеза протекает в мембранах тилакоидов при участии белков-переносчиков электронов, АТФ-синтетазы и хлорофилла (или другого пигмента).

Функционирование электрохимических цепей, по которым происходит передача электронов и частично протонов водорода, образуется в сложных комплексах, формирующихся пигментами и ферментами.

Описание процесса световой фазы:

  1. При попадании солнечного света на листовые пластины растительных организмов происходит возбуждение электронов хлорофилла в структуре пластин;
  2. В активном состоянии частицы выходят из пигментной молекулы и попадают на внешнюю сторону тилакоида, заряженную отрицательно. Это происходит одновременно с окислением и последующим восстановлением молекул хлорофилла, которые отбирают очередные электроны у поступившей в листья воды;
  3. Затем происходит фотолиз воды с образованием ионов, которые отдают электроны и преобразуются в радикалы OH, способные участвовать в реакциях и в дальнейшем;
  4. Затем эти радикалы соединяются, образуя молекулы воды и свободный кислород, выходящий в атмосферу;
  5. Тилакоидная мембрана приобретает с одной стороны положительный заряд за счет иона водорода, а с другой - отрицательный за счет электронов;
  6. С достижением разницы в 200 мВ между сторонами мембраны протоны проходят через фермент АТФ-синтетазу, что приводит к превращению АДФ в АТФ (процесс фосфорилирования);
  7. С освободившимся из воды атомным водородом происходит восстановление НАДФ + в НАДФ·Н2;

Тогда как свободный кислород в процессе реакций выходит в атмосферу, АТФ и НАДФ·Н2 участвуют в темновой фазе природного синтеза.

Темновая

Обязательный компонент для этой стадии - углекислый газ , который растения постоянно поглощают из внешней среды через устьица в листьях. Процессы темновой фазы проходят в строме хлоропласта. Поскольку на данном этапе не требуется много солнечной энергии и будет достаточно получившихся в ходе световой фазы АТФ и НАДФ·Н2, реакции в организмах могут протекать и днем, и ночью. Процессы на этой стадии происходят быстрее, чем на предыдущей.

Совокупность всех процессов, происходящих в темновой фазе, представлена в виде своеобразной цепочки последовательных преобразований углекислоты, поступившей из внешней среды:

  1. Первой реакцией в такой цепочке является фиксация углекислого газа. Наличие фермента РиБФ-карбоксилаза способствует быстрому и плавному протеканию реакции, в результате которой происходит образование шестиуглеродного соединения, распадающегося на 2 молекулы фосфоглицериновой кислоты;
  2. Затем происходит довольно сложный цикл, включающий еще определенное число реакций, по завершении которых фосфоглицериновая кислота преобразуется в природный сахар - глюкозу. Этот процесс называют циклом Кальвина;

Вместе с сахаром также происходит формирование жирных кислот, аминокислот, глицерина и нуклеотидов.

Суть фотосинтеза

Из таблицы сравнений световой и темновой фаз природного синтеза можно вкратце описать суть каждой из них. Световая фаза происходит в гранах хлоропласта с обязательным включением в реакции световой энергии. В реакциях задействованы такие компоненты как белки, переносящие электроны, АТФ-синтетаза и хлорофилл, которые при взаимодействии с водой образуют свободный кислород, АТФ и НАДФ·Н2. Для темновой фазы, происходящей в строме хлоропласта, солнечный свет не является обязательным. Получившиеся на прошлом этапе АТФ и НАДФ·Н2 при взаимодействии с углекислотой формируют природный сахар (глюкозу).

Как видно из вышеизложенного, фотосинтез предстает довольно сложным и многоступенчатым явлением, включающим множество реакций, в которых задействуются разные вещества. В итоге природного синтеза получается кислород, необходимый для дыхания живых организмов и защиты их от ультрафиолетовой радиации с помощью образования озонового слоя.

Мембраны тилакоидов содержат большое количество белков и низкомолекулярных пигментов, как свободных, так и соединенных с белками, которые объединены в два сложно устроенных комплекса, называемых фотосистема I и фотосистема I I. Ядром каждой из этих фотосистем является белок, содержащий зеленый пигмент хлорофилл , способный поглощать свет в красной области спектра. Входящие в состав фотосинтетических комплексов разнообразные пигменты способны улавливать даже очень слабый свет и передавать его энергию на хлорофилл, в связи с этим фотосинтез может идти даже при незначительном освещении (например, в тени деревьев или в пасмурную погоду).

Поглощение кванта света молекулой хлорофилла фотосистемы II приводит к ее возбуждению, а именно, один из электронов при этом переходит на более высокий энергетический уровень. Данный электрон передается на цепь переносчиков электронов, а точнее, на пигменты и белки-цитохромы, растворенные в мембране тилакоида, чем-то напоминающие цитохромы внутренней мембраны митохондрий (см. рисунок). По аналогии с митохондриальной цепью переноса электронов, происходит снижение энергии электрона при его передаче от переносчика к переносчику. Часть его энергии уходит на перенос протонов через мембрану из стромы хлоропласта внутрь тилакоида. На мембране тилакоида, таким образом, появляется градиент концентрации протонов . Данный градиент может быть использован специальным ферментом АТФ-синтетазой для синтеза АТФ из АДФ и Н 3 РО 4 (Ф н). Т.е. в хлоропластах реализован тот же, так называемый, принцип «плотины», который был рассмотрен раньше на примере митохондрий. Синтез АТФ во время световой фазы фотосинтеза называют фотофосфорилированием . Это название связано с тем, что при этом используется энергия солнечного света. Отличительной чертой окислительного фосфорилирования в митохондриях является то, что энергия для синтеза АТФ образуется при окислении органических субстратов (см. раздел « «).

Восстановление окисленного хлорофилла, который «потерял» электрон, фотосистемы II происходит в результате деятельности специального фермента, разлагающего молекулу воды, отбирая у нее (молекулы) электроны:

Н 2 О —> 2e — + 2Н + + 1/2О 2

Вышеуказанный процесс назван фотолизом воды , а протекает он на внутренней стороне мембраны тилакоидов. Этот процесс приводит к еще большему увеличению градиента концентрации протонов на мембране, а следовательно, к дополнительному синтезу АТФ.

Т.е., можно сказать, что вода является «поставщиком» электронов для хлорофилла. Побочным продуктом этой реакции является молекулярный кислород, который за счет диффузии покидает хлоропласты и через устьица выделяется в атмосферу.

Попробуем проследить дальше «судьбу» электронов, отрываемых от хлорофилла фотосистемы II. Они проходят по цепи переносчиков и попадают в реакционный центр фотосистемы I, так же содержащий молекулу хлорофилла. Эта молекула хлорофилла так же поглощает квант света и передает его энергию одному из электронов, поднимая его при этом на более высокий энергетический уровень. Электрон, проходя по цепи специальных белков-переносчиков, передается молекуле НАДФ+. Эта молекуле НАДФ + получает в следующем цикле еще один электрон, захватывает протон из стромы хлоропласта и восстанавливается до НАДФН.

Итак, электроны, которые были «оторванны» от молекулы воды, получают высокую энергию благодаря поглощению квантов света хлорофиллами фотосистем II и I, затем, пройдя по цепи переносчиков, восстанавливают НАДФ + . Частично энергия этих электронов тратится на перенос протонов через мембрану тилакоида и создание градиента их концентрации. Затем энергия градиента протонов будет использована для синтеза АТФ ферментом АТФ-синтазой.

Фотосинтез – процесс довольно сложный и включает две фазы: световую, которая всегда происходит исключительно на свету, и темновую. Все процессы происходят внутри хлоропластов на особых маленьких органах - тилакоидах. В ходе световой фазы хлорофиллом поглощается квант света, в результате чего образуются молекулы АТФ и НАДФН. Вода при этом распадается, образуя ионы водорода и выделяя молекулу кислорода. Возникает вопрос, что это за непонятные загадочные вещества: АТФ и НАДН?

АТФ – это особые органические молекулы, которые имеются у всех живых организмов, их часто называют «энергетической» валютой. Именно эти молекулы содержат высокоэнергетические связи и являются источником энергии при любых органических синтезах и химических процессах в организме. Ну, а НАДФН – это собственно источник водорода, используется непосредственно при синтезе высокомолекулярных органических веществ - углеводов, который происходит во второй, темновой фазе фотосинтеза с использованием углекислого газа. Но давайте по порядку.

Cветовая фаза фотосинтеза

В хлоропластах содержится очень много молекул хлорофилла, и все они поглощают солнечный свет. Одновременно свет поглощается и другими пигментами, но они не умеют осуществлять фотосинтез. Сам процесс происходит лишь только в некоторых молекулах хлорофилла, которых совсем немного. Другие же молекулы хлорофилла, каротиноидов и других веществ образуют особые антенные, а также светособирающие комплексы (ССК). Они, как антенны, поглощают кванты света и передают возбуждение в особые реакционные центры или ловушки. Эти центры находятся в фотосистемах, которых у растений две: фотосистема II и фотосистема I. В них имеются особые молекулы хлорофилла: соответственно в фотосистеме II - P680, а в фотосистеме I - P700. Они поглощают свет именно такой длины волны(680 и 700 нм).

По схеме более понятно, как все выглядит и происходит во время световой фазы фотосинтеза.

На рисунке мы видим две фотосистемы с хлорофиллами Р680 и Р700. Также на рисунке показаны переносчики, по которым происходит транспорт электронов.

Итак: обе молекулы хлорофилла двух фотосистем поглощают квант света и возбуждаются. Электрон е- (на рисунке красный) у них переходит на более высокий энергетический уровень.

Возбужденные электроны обладает очень высокой энергией, они отрываются и поступают в особую цепь переносчиков, которая находится в мембранах тилакоидов – внутренних структур хлоропластов. По рисунку видно, что из фотосистемы II от хлорофилла Р680 электрон переходит к пластохинону, а из фотосистемы I от хлорофилла Р700 – к ферредоксину. В самих молекулах хлорофилла на месте электронов после их отрыва образуются синие дырки с положительным зарядом. Что делать?

Чтобы восполнить недостачу электрона молекула хлорофилла Р680 фотосистемы II принимает электроны от воды, при этом образуются ионы водорода. Кроме того, именно за счет распада воды образуется выделяющийся в атмосферу кислород. А молекула хлорофилла Р700, как видно из рисунка, восполняет недостачу электронов через систему переносчиков от фотосистемы II.

В общем, как бы ни было сложно, именно так протекает световая фаза фотосинтеза, ее главная суть заключается в переносе электронов. Также по рисунку можно заметить, что параллельно транспорту электронов происходит перемещение ионов водорода Н+ через мембрану, и они накапливаются внутри тилакоида. Так как их там становится очень много, они перемещаются наружу с помощью особого сопрягающего фактора, который на рисунке оранжевого цвета, изображен справа и похож на гриб.

В завершении мы видим конечный этап транспорта электрона, результатом которого является образование вышеупомянутого соединения НАДН. А за счет переноса ионов Н+ синтезируется энергетическая валюта – АТФ (на рисунке видно справа).

Итак, световая фаза фотосинтеза завершена, в атмосферу выделился кислород, образовались АТФ и НАДН. А что же дальше? Где обещанная органика? А дальше наступает темновая стадия, которая заключается, главным образом, в химических процессах.

Темновая фаза фотосинтеза

Для темновой фазы фотосинтеза обязательным компонентом является углекислый газ – СО2. Поэтому растение должно постоянно его поглощать из атмосферы. Для этой цели на поверхности листа имеются специальные структуры – устьица. Когда они открываются, СО2 поступает именно внутрь листа, растворяется в воде и вступает в реакцию световой фазы фотосинтеза.

В ходе световой фазы у большинства растений СО2 связывается с пятиуглеродным органическим соединением (которое представляет собой цепочку из пяти молекул углерода), в результате чего образуются две молекулы трехуглеродного соединения (3-фосфоглицериновая кислота). Т.к. первичным результатом являются именно эти трехуглеродные соединения, растения с таким типом фотосинтеза получили название С3-растений.

Дальнейший синтез, происходящий в хлоропластах, довольно сложен. В конечном итоге образуется шестиуглеродное соединение, из которого потом могут синтезироваться глюкоза, сахароза или крахмал. Именно в виде этих органических веществ растение накапливает энергию. Только небольшая их часть остается в листе и используется для его нужд. Остальные же углеводы путешествуют по всему растению и поступают именно туда, где больше всего нужна энергия, например, в точки роста.

Фотосинтез состоит из двух фаз - световой и темновой.

В световой фазе кванты света (фотоны) взаимодействуют с молекулами хлорофилла, в результате чего эти молекулы на очень короткое время переходят в более богатое энергией- «возбужденное» состояние. Затем избыточная энергия части «возбужденных» молекул преобразуется в теплоту или испускается в виде света. Другая ее часть передается ионам водорода, всегда имеющимся в водном растворе вследствие диссоциации воды. Образовавшиеся атомы водорода непрочно соединяются с органическими молекулами - переносчиками водорода. Ионы гидроксида ОН" отдают свои электроны другим молекулам и превращаются в свободные радикалы ОН. Радикалы ОН взаимодействуют друг с другом, в результате чего образуются вода и молекулярный кислород:

4ОН = О2 + 2Н2О Таким образом, источником молекулярного кислорода, образующегося в процессе фотосинтеза и выделяющегося в атмосферу, является фотолиз - разложение воды под влиянием света. Кроме фотолиза воды энергия солнечного излучения используется в световой фазе для синтеза АТФ и АДФ и фосфата без участия кислорода. Это очень эффективный процесс: в хлоропластах образуется в 30 раз больше АТФ, чем в митохондриях тех же растений с участием кислорода. Таким путем накапливается энергия, необходимая для процессов в темновой фазе фотосинтеза.

В комплексе химических реакций темновой фазы, для течения которой свет не обязателен, ключевое место занимает связывание СО2. В этих реакциях участвуют молекулы АТФ, синтезированные во время световой фазы, и атомы водорода, образовавшиеся в процессе фотолиза воды и связанные с молекулами-переносчиками:

6СО2 + 24Н -» С6Н12О6 + 6НЭО

Так энергия солнечного света преобразуется в энергию химических связей сложных органических соединений.

87. Значение фотосинтеза для растений и для планеты.

Фотосинтез является основным источником биологической энергии, фотосинтезирующие автотрофы используют её для синтеза органических веществ из неорганических, гетеротрофы существуют за счёт энергии, запасённой автотрофами в виде химических связей, высвобождая её в процессах дыхания и брожения. Энергия получаемая человечеством при сжигании ископаемого топлива (уголь, нефть, природный газ, торф) также является запасённой в процессе фотосинтеза.

Фотосинтез является главным входом неорганического углерода в биологический цикл. Весь свободный кислород атмосферы - биогенного происхождения и является побочным товаром фотосинтеза. Формирование окислительной атмосферы (кислородная катастрофа) полностью изменило состояние земной поверхности, сделало возможным появление дыхания, а в дальнейшем, после образования озонового слоя, позволило жизни выйти на сушу. Процесс фотосинтеза является основой питания всех живых существ, а также снабжает человечество топливом (древесина, уголь, нефть), волокнами (целлюлоза) и бесчисленными полезными химическими соединениями. Из диоксида углерода и воды, связанных из воздуха в ходе фотосинтеза, образуется около 90-95% сухого веса урожая. Остальные 5-10% приходятся на минеральные соли и азот, полученные из почвы.



Человек использует около 7% продуктов фотосинтеза в пищу, в качестве корма для животных и в виде топлива и строительных материалов.

Фотосинтез, являющийся одним из самых распространенных процессов на Земле, обуславливает природные круговороты углерода, кислорода и других элементов и обеспечивает материальную и энергетическую основу жизни на нашей планете. Фотосинтез является единственным источником атмосферного кислорода.

Фотосинтез - один из самых распространенных процессов на Земле, обусловливает круговорот в природе углерода, O2 и др. элементов. Он составляет материальную и энергетическую основу всего живого на планете. Ежегодно в результате фотосинтеза в виде органического вещества связывается около 8 1010 т углерода, образуется до 1011 т целлюлозы. Благодаря фотосинтезу растения суши образуют около 1,8 1011 т сухой биомассы в год; примерно такое же количество биомассы растений образуется ежегодно в Мировом океане. Тропический лес вносит до 29% в общую продукцию фотосинтеза суши, а вклад лесов всех типов составляет 68%. Фотосинтез высших растений и водорослей - единственный источник атмосферного O2. Возникновение на Земле около 2,8 млрд. лет назад механизма окисления воды с образованием O2 представляет собой важнейшее событие в биологической эволюции, сделавшее свет Солнца главным источником - свободной энергии биосферы, а воду - практически неограниченным источником водорода для синтеза веществ в живых организмах. В результате образовалась атмосфера современного состава, O2 стал доступным для окисления пищи, а это обусловило возникновение высокоорганизованных гетеротрофных организмов (применяют в качестве источника углерода экзогенные органические вещества). Общее запасание энергии солнечного излучения в виде продуктов фотосинтеза составляет около 1,6 1021 кДж в год, что примерно в 10 раз превышает современное энергетическое потребление человечества. Примерно половина энергии солнечного излучения приходится на видимую область спектра (длина волны l от 400 до 700 нм), которая используется для фотосинтеза (физиологически активная радиация, или ФАР). ИК излучение не пригодно для фотосинтеза кислородвыделяющих организмов (высших растений и водорослей), но используется некоторыми фотосинтезирующими бактериями.



Открытие процесса хемосинтеза С.Н.Виноградским. Характеристика процесса.

Хемосинтез - процесс синтеза из углекислого газа органических веществ, который происходит за счет энергии, выделяемой при окислении аммиака, сероводорода и других химических веществ, в ходе жизнедеятельности микроорганизмов. У хемосинтеза также есть и другое название - хемолитоавтотрофия. Открытие хемосинтеза С. Н. Виноградовским в 1887 году в корне изменило представления науки о типах обмена веществ, являющихся основными для живых организмов. Хемосинтез для многих микроорганизмов является единственным типом питания, так как они способны усваивать углекислый газ как единственный источник углерода. В отличие от фотосинтеза в хемосинтезе вместо энергии света используется энергия, которая образуется в результате окислительно-восстановительных реакций.

Этой энергии должно быть достаточно для синтеза аденозинтрифосфорной кислоты (АТФ), а её количество должно превышать 10 ккал/моль. Некоторые из окисляемых веществ отдают свои электроны в цепь уже на уровне цитохрома, и таким образом создаётся для синтеза восстановителя дополнительный расход энергии. При хемосинтезе биосинтез органических соединений происходит за счет автотрофной ассимиляции углекислого газа, то есть точно таким же образом, как и при фотосинтезе. В результате переноса электронов по цепи дыхательных ферментов бактерий, которые являются встроенными в клеточную мембрану, получается энергия в виде АТФ. Из-за очень большого расхода энергии все хемосинтезирующие бактерии, кроме водородных, образуют довольно мало биомассы, но при этом они окисляют большой объем неорганических веществ. Водородные бактерии используются учеными для получения белка и очистки атмосферы от углекислого газа, особенно это необходимо в замкнутых экологических системах. Существует великое разнообразие хемосинтезирующих бактерий, их большая часть относится к псевдомонадам, также они встречаются среди нитчатых и почкующихся бактерий, лептоспир, спирилл и коринебактерий.

Примеры использования хемосинтеза прокариотами.

Суть хемосинтеза (процесса, открытого российским исследователем Сергеем Николаевичем Виноградским) – получение организмом энергии за счет окислительно-восстановительных реакций, проводимых самим этим организмом с простыми (неорганическими) веществами. Примерами таких реакций может быть окисление аммония до нитрита, или двухвалентного железа до трёхвалентного, сероводорода до серы, и т.п.. Способны к хемосинтезу только определенные группы прокариот (бактерий в широком смысле слова). За счёт хемосинтеза в настоящее время существуют только экосистемы некоторых гидротермалей (мест на дне океана, где есть выходы горячих подземных вод, богатых восстановленными веществами – водородом, сероводородом, сульфидом железа и т.п.), а также крайне простые, состоящие только из бактерий, экосистемы, обнаруженные на большой глубине в разломах горных пород на суше.

Бактерии – хемосинтетики, разрушают горные породы, очищают сточные воды, участвуют в образовании полезных ископаемых.