Стронций. Химический элемент стронций - описание, свойства и формула

  • Дата: 29.09.2019

Стронций

СТРО́НЦИЙ -я; м. [лат. strontium] Химический элемент (Sr), лёгкий серебристо-белый металл, радиоактивные изотопы которого применяются в ядерных испытаниях и в технике.

Стро́нциевый, -ая, -ое.

стро́нций

(лат. Strontium), химический элемент II группы периодической системы, относится к щёлочноземельным металлам. Назван по минералу стронцианиту, найденному около деревни Строншиан (Strontian) в Шотландии. Серебристо-белый металл; плотность 2,63 г/см 3 , t пл 768°C. Химически очень активен, поэтому сам металл применяют мало (при выплавке меди и бронз для их очистки, в электровакуумной технике как геттер), соли - в производстве красок, светящихся составов, глазурей и эмалей. SrTiO 3 - сегнетоэлектрик. При ядерных взрывах, в ядерных реакторах образуется радиоактивный изотоп 90 Sr (период полураспада 29,1 года), представляющий большую опасность для человека при попадании его в природную среду.

СТРОНЦИЙ

СТРО́НЦИЙ (лат. Strontium, от деревни Srtrontian в Шотландии, близ которой был найден), химический элемент с атомным номером 38, атомная масса 87,62. Химический символ Sr, читается «стронций». Расположен в 5 периоде в группе IIА периодической системы элементов. Щелочноземельный металл. Природный стронций состоит из четырех стабильных изотопов с массовыми числами 84 (0,56% по массе), 86 (9,86%), 87 (7,02%) и 88 (82,56%).
Конфигурация внешнего электронного слоя 5s 2 . Степень окисления +2 (валентность II). Радиус атома 0,215 нм, радиус иона Sr 2+ 0,132 нм (координационное число 6). Энергии последовательной ионизации 5,6941 и 11,0302 эВ. Электроотрицательность по Полингу (см. ПОЛИНГ Лайнус) 1,0.
Стронций - мягкий серебристо-белый сравнительно легкий металл.
История открытия
В 1764 в свинцовом руднике был обнаружен новый минерал - стронцианит. В 1890 англичанин А. Кроуфорд и, одновременно с ним, англичанин Т. Хоп, немецкий химик М. Клапрот (см. КЛАПРОТ Мартин Генрих) и российский академик Т. Е. Ловиц (см. ЛОВИЦ Товий Егорович) выделили из стронцианита оксид нового элемента. В 1808 амальгаму стронция получил английский химик Г. Дэви (см. ДЭВИ Гемфри) .
Распространенность в природе
Содержание в земной коре 0,034% по массе. В свободном виде не встречается. Важнейшие минералы: стронцианит (см. СТРОНЦИАНИТ) и целестин (см. ЦЕЛЕСТИН) SrSO 4 . Как примесь, содержится в минералах кальция, например, во фторапатите 3Са 3 (РО 4) 2 · СаF 2 .
Получение
Основной источник сырья при получении стронция и его соединений - целестин SrSO 4 - сначала восстанавливают углем при сильном нагревании:
SrSO 4 + 4С = SrS + 4СО
Затем сульфид стронция SrS соляной кислотой (см. СОЛЯНАЯ КИСЛОТА) переводят в SrCl 2 и обезвоживают его. Для получения Sr его хлорид восстанавливают магнием (см. МАГНИЙ) в атмосфере водорода:
SrCl 2 + Mg = MgCl 2 + Sr
Стронций получают также восстановлением SrO алюминием (см. АЛЮМИНИЙ) , кремнием (см. КРЕМНИЙ) или ферросилицием:
4SrO + 2Al = 3Sr + SrAl 2 O 4
Физические и химические свойства
Стронций - мягкий серебристо-белый металл, существующий в трех модификациях. До 231°C устойчива a-модификация с кубической гранецентрированной решеткой типа Cu, а = 0,6085 нм. При 231-623°C - b-модификация с гексагональной решеткой, при 623°C до температуры плавления (768°C) - g-модификация с кубической объемно центрированной решеткой. Температура кипения 1390°C, плотность 2,63 кг/дм 3 . Стронций ковкий, пластичный металл.
Стронций химически высокоактивен. Стандартный электродный потенциал Sr 2+ /Sr - 2,89 В.
При комнатной температуре на воздухе стронций покрывается пленкой из оксида SrO и пероксида SrO 2 . При нагревании на воздухе воспламеняется. Взаимодействуя с галогенами, (см. ГАЛОГЕНЫ) образует галогениды SrCl 2 и SrBr 2 . При нагревании до 300-400°C реагирует с водородом (см. ВОДОРОД) , образуя гидрид SrH 2 . Нагревая стронций в атмосфере CO 2 , получают:
5Sr + 2CO 2 = SrC 2 + 4SrO
Стронций активно реагирует с водой:
Sr + 2Н 2 О = Sr(ОН) 2 + Н 2
При нагревании стронций взаимодействует с азотом, серой, селеном и другими неметаллами с образованием нитрида Sr 3 N 2 , сульфида SrS, селенида SrSe и так далее.
Оксид стронция - основной, взаимодействует с водой, образуя гидроксид:
SrО + Н 2 О = Sr(ОН) 2
При взаимодействии с кислотными оксидами SrO образует соли:
SrО +СО 2 = SrСО 3
Ионы Sr 2+ бесцветны. Хлорид SrCl 2 , бромид SrBr 2 , иодид SrI 2 , нитрат Sr(NO 3) 2 хорошо растворимы в воде и окрашивают пламя в карминово-красный цвет. Нерастворимы карбонат SrCO 3 , сульфат SrSO 4 , средний ортофосфат Sr 3 (PO 4) 2 .
Применение
Стронций используется, как легирующая добавка к сплавам на основе магния, алюминия, свинца, никеля и меди. Cтронций входит в состав геттеров. Соединения стронция используются в пиротехнике, входят в состав люминесцентных материалов, эмиссионных покрытий радиоламп, используются при изготовлении стекол.
Титанат стронция SrTiO 3 используется при изготовлении диэлектрических антенн, пьезоэлементов, малогабаритных нелинейных конденсаторов, в качестве датчиков инфракрасного излучения. Препараты 90 Sr используются при лучевой терапии кожных и некоторых глазных болезней.
Физиологическое действие
Соединения стронция токсичны. При попадании в организм возможно поражение костной ткани и печени. ПДК стронция в воде 8 мг/л, в воздухе для гидроксида, нитрата и оксида 1 мг/м 3 , для сульфата и фосфата 6 мг/м 3 .
Проблемы 90 Sr
При взрывах ядерных зарядов или из-за утечки радиоактивных отходов в окружающую среду поступает радиоактивный изотоп 90 Sr. Образуя хорошо растворимый в воде гидрокарбонат Sr(HCO 3) 2 , 90 Sr мигрирует в воду, почву, растения и организмы животных.


Энциклопедический словарь . 2009 .

Синонимы :

Смотреть что такое "стронций" в других словарях:

    - (ново лат.). Легкий металл желтого цвета, названный так по имени деревни в Шотландии, в окрестностях которой открыт впервые; в соединении с углекислотою образует минерал стронцианит. Словарь иностранных слов, вошедших в состав русского языка.… … Словарь иностранных слов русского языка

    Таблица нуклидов Общие сведения Название, символ Стронций 90, 90Sr Альтернативные названия Радиостронций Нейтронов 52 Протонов 38 Свойства нуклида Атомная масса 8 … Википедия

    СТРОНЦИЙ - хим. элемент, символ Sr (лат. Strontium), ат. н. 38, ат. м. 87,62; относится к щёлочноземельным металлам, имеет серебристо белый цвет, плотность 2630 кг/м3, tпл = 768 °С. Химически очень активен, поэтому в чистом виде применяется мало. Используют … Большая политехническая энциклопедия

    Хим. элемент II гр. периодической системы, порядковый номер 38, ат. в. 87, 63; состоит из 4 стабильных изотопов. Средний изотопный состав обычного С. следующий: Sr84 0,56%, Si86 9,86%, Sr87 7,02%, Sr88 82,56%. Один из изотопов С. Sr87… … Геологическая энциклопедия

    Целестин Словарь русских синонимов. стронций сущ., кол во синонимов: 5 иностранец (23) метал … Словарь синонимов

    - (Strontium), Sr, химический элемент II группы периодической системы, атомный номер 38, атомная масса 87,62; мягкий щелочноземельный металл. В результате ядерных испытаний, аварий на АЭС и с радиоактивными отходами в окружающую среду попадает… … Современная энциклопедия

    - (лат. Strontium) Sr, химический элемент II группы периодической системы, атомный номер 38, атомная масса 87,62, относится к щелочноземельным металлам. Назван по минералу стронцианиту, найденному около д. Строншиан (Strontian) в Шотландии.… … Большой Энциклопедический словарь - (Strontium), Sr, хим. элемент II группы периодич. системы элементов, ат. номер 38, ат. масса 87,62, щёлочно земельный металл. Природный С. смесь стабильных 84Sr, 86Sr 88Sr, в к рой преобладает 88Sr (82,58%), а меньше всего 84Sr (0,56%).… … Физическая энциклопедия

Природный стронций состоит из четырех стабильных изотопов 88 Sr (82,56%), 86 Sr (9,86%), 87 Sr (7,02%) и 84 Sr (0,56%). Распространенность изотопов стронция варьируетcя в связи с образованием 87 Sr за счет распада природного 87 Rb. По этой причине точный изотопный состав стронция в породе или минерале, которые содержат рубидий, зависит от возраста и отношения Rb/Sr в данной породе или минерале.

Искусственно получены радиоактивные изотопы с массовыми числами от 80 до 97, в том числе 90 Sr (Т 1/2 = 29,12 года), образующийся при делении урана. Степень окисления +2, очень редко +1.

История открытия элемента.

Свое название стронций получил от минерала стронцианита, найденного в 1787 в свинцовом руднике около Стронциана (Шотландия). В 1790 английским химиком Адером Кроуфордом (Crawford Ader) (1748–1795) было показано, что стронцианит содержит новую, еще неизвестную «землю». Эту особенность стронцианита установил также и немецкий химик Мартин Генрих Клапрот (Klaproth Martin Heinrich) (1743–1817). Английский химик Т.Хоп (Hope T.) в 1791 доказал, что в стронцианите содержится новый элемент. Он четко разграничил соединения бария, стронция и кальция, используя, помимо других методов, характерную окраску пламени: желто-зеленую для бария, ярко-красную для стронция и оранжево-красную для кальция.

Независимо от западных ученых, петербургский академик Тобиаш (Товий Егорович) Ловиц (1757–1804) в 1792, исследуя минерал барит, пришел к заключению, что в нем, помимо оксида бария, в качестве примеси находится и «стронцианова земля». Он сумел извлечь из тяжелого шпата более 100 г новой «земли» и исследовал ее свойства. Результаты этой работы были опубликованы в 1795. Ловиц писал тогда: «Я был приятно поражен, когда прочел... прекрасную статью г-на профессора Клапрота о стронциановой земле, о которой до этого имелось очень неясное представление... Все указанные им свойства солекислых и селитрокислых средних солей во всех пунктах совершеннейшим образом совпадают со свойствами моих таких же солей... Мне оставалось только проверить... замечательное свойство стронциановой земли – окрашивать спиртовое пламя в карминово-красный цвет, и, действительно, моя соль... обладала в полной мере этим свойством».

В свободном виде стронций первым выделил английский химик и физик Гемфри Дэви в 1808. Металлический стронций был получен при электролизе его увлажненного гидроксида. Выделявшийся на катоде стронций соединялся с ртутью, образуя амальгаму. Разложив амальгаму нагреванием, Дэви выделил чистый металл.

Распространенность стронция в природе и его промышленное получение. Содержание стронция в земной коре составляет 0,0384%. Он является пятнадцатым по распространенности и следует сразу за барием, немного уступая фтору. В свободном виде стронций не встречается. Он образует около 40 минералов. Наиболее важный из них – целестин SrSO 4 . Добывают также стронцианит SrCO 3 . Стронций присутствует в качестве изоморфной примеси в различных магниевых, кальциевых и бариевых минералах.

Стронций содержится и в природных водах. В морской воде его концентрация составляет 0,1 мг/л. Это означает, что в водах Мирового океана содержатся миллиарды тонн стронция. Минеральные воды, содержащие стронций, считают перспективным сырьем для выделения этого элемента. В океане часть стронция концентрируется в железомарганцевых конкрециях (4900 т в год). Стронций накапливается также простейшими морскими организмами – радиоляриями, скелет которых построен из SrSO 4 .

Доскональная оценка мировых промышленных ресурсов стронция не проводилась, но полагают, что они превышают 1 млрд. т.

Наиболее крупные залежи целестина – в Мексике, Испании и Турции. В России подобные месторождения есть в Хакассии, Пермской и Тульской области. Однако потребности в стронции в нашей стране удовлетворяются, в основном, за счет импорта, а также переработки апатитового концентрата, где карбонат стронция составляет 2,4%. Специалисты считают, что добыча стронция в недавно открытом Кишертском месторождении (Пермская область) может повлиять на ситуацию на мировом рынке этого продукта. Цена на пермский стронций может оказаться примерно в 1,5 раза ниже, чем на американский, стоимость которого сейчас составляет около 1200 долл. за тонну.

Характеристика простого вещества и промышленное получение металлического стронция.

Металлический стронций имеет серебристо-белую окраску. В неочищенном состоянии он окрашен в бледно-желтый цвет. Это сравнительно мягкий металл, легко режется ножом. При комнатной температуре стронций имеет кубическую гранецентрированную решетку (a -Sr); при температуре выше 231° С превращается в гексагональную модификацию (b -Sr); при 623° С переходит в кубическую объёмноцентрированную модификацию (g -Sr). Стронций относится к легким металлам, плотность его a -формы 2,63г/см3 (20° С). Температура плавления стронция равна 768° С, температура кипения составляет 1390° С.

Являясь щелочноземельным металлом, стронций активно реагирует с неметаллами. При комнатной температуре металлический стронций покрывается пленкой из оксида и пероксида. При нагревании на воздухе воспламеняется. Стронций легко образует нитрид, гидрид и карбид. При повышенных температурах стронций реагирует с диоксидом углерода:

5Sr + 2CO 2 = SrC 2 + 4SrO

Металлический стронций взаимодействует с водой и кислотами, выделяя из них водород:

Sr + 2H 3 O + = Sr 2+ + H 2 ­ + 2H 2 O

Реакция не идет в тех случаях, когда образуются малорастворимые соли.

Стронций растворяется в жидком аммиаке с образованием темно-синих растворов, из которых при выпаривании можно получить блестящий аммиакат медного цвета Sr(NH 3) 6 , постепенно разлагающийся до амида Sr(NH 2) 2 .

Для получения металлического стронция из природного сырья целестиновый концентрат сначала восстанавливают при нагревании углем до сульфида стронция. Затем сульфид стронция обрабатывают соляной кислотой, а полученный хлорид стронция обезвоживают. Стронцианитовый концентрат разлагают обжигом при 1200° С, а затем растворяют образовавшийся оксид стронция в воде или кислотах. Нередко стронцианит сразу растворяют в азотной или соляной кислоте.

Металлический стронций получают электролизом смеси расплавленных хлорида стронция (85%) и хлорида калия или аммония (15%) на никелевом или железном катоде при 800° С. Полученный этим методом стронций обычно содержит 0,3–0,4% калия.

Используют также высокотемпературное восстановление оксида стронция алюминием:

4SrO + 2Al = 3Sr + SrO·Al 2 O 3

Для металлотермического восстановления оксида стронция применяют также кремний или ферросилиций. Процесс ведут при 1000° С в вакууме в стальной трубке. Хлорид стронция восстанавливают металлическим магнием в атмосфере водорода.

Крупнейшими производителями стронция являются Мексика, Испания, Турция и Великобритания.

Несмотря на довольно большое содержание в земной коре, широкого применения металлический стронций еще не нашел. Как и другие щелочноземельные металлы, он способен очищать черный металл от вредных газов и примесей. Это свойство дает стронцию перспективу применения в металлургии. Кроме того, стронций является легирующей добавкой к сплавам магния, алюминия, свинца, никеля и меди.

Металлический стронций поглощает многие газы и поэтому используется в качестве геттера в электровакуумной технике.

Соединения стронция.

Преобладающая степень окисления (+2) для стронция обусловлена, в первую очередь, его электронной конфигурацией. Он образует многочисленные бинарные соединения и соли. В воде хорошо растворимы хлорид, бромид, иодид, ацетат и некоторые другие соли стронция. Большинство солей стронция мало растворимы; среди них сульфат, фторид, карбонат, оксалат. Малорастворимые соли стронция легко получаются обменными реакциями в водном растворе.

Многие соединения стронция имеют необычное строение. Например, изолированные молекулы галогенидов стронция заметно изогнуты. Валентный угол составляет ~120° для SrF 2 и ~115° – для SrCl 2 . Это явление можно объяснить с помощью sd- (а не sp-) гибридизации.

Оксид стронция SrO получают прокаливанием карбоната или дегидратацией гидроксида при температуре красного каления. Энергия решетки и температура плавления этого соединения (2665° С) очень высоки.

При прокаливании оксида стронция в кислородной среде при высоком давлении образуется пероксид SrO 2 . Получен также желтый надпероксид Sr(O 2) 2 . При взаимодействии с водой оксид стронция образует гидроксид Sr(OH) 2 .

Оксид стронция – компонент оксидных катодов (эмиттеров электронов в электровакуумных приборах). Он входит в состав стекла кинескопов цветных телевизоров (поглощает рентгеновское излучение), высокотемпературных сверхпроводников, пиротехнических смесей. Его применяют как исходное вещество для получения металлического стронция.

В 1920 американец Хилл впервые применил матовую глазурь, в состав которой входили оксиды стронция, кальция и цинка, однако этот факт остался незамеченным, и новая глазурь не стала конкурентом традиционных свинцовых глазурей. Лишь в годы Второй мировой войны, когда свинец стал особо дефицитным, вспомнили об открытии Хилла. Это вызвало лавину исследований: в разных странах появились десятки рецептур стронциевых глазурей. Стронциевые глазури не только менее вредны по сравнению со свинцовыми, но и более доступны (карбонат стронция в 3,5 раза дешевле свинцового сурика). При этом им свойственны все положительные качества свинцовых глазурей. Более того, изделия, покрытые такими глазурями, приобретают дополнительную твердость, термостойкость, химическую стойкость.

На основе оксидов кремния и стронция готовят также эмали – непрозрачные глазури. Непрозрачными их делают добавки окислов титана и цинка. Изделия из фарфора, особенно вазы, часто украшают глазурью «кракле». Такая ваза словно покрыта сеткой окрашенных трещин. Основа технологии «кракле» – разные коэффициенты термического расширения глазури и фарфора. Фарфор, покрытый глазурью, обжигают при температуре 1280–1300° C, затем температуру снижают до 150–220° C и еще не до конца остывшее изделие опускают в раствор красящих солей (например, солей кобальта, если нужно получить черную сетку). Эти соли заполняют возникающие трещины. После этого изделие сушат и вновь нагревают до 800–850° C – соли плавятся в трещинах и герметизируют их.

Гидроксид стронция Sr(OH)2 считают умеренно сильным основанием. Он не очень хорошо растворим в воде, поэтому его можно осадить при действии концентрированного раствора щелочи:

SrCl 2 + 2KOH(конц) = Sr(OH) 2 Ї + 2KCl

При обработке кристаллического гидроксида стронция пероксидом водорода образуется SrO 2 ·8H 2 O.

Гидроксид стронция может применяться для выделения сахара из патоки, однако обычно используют более дешевый гидроксид кальция.

Карбонат стронция SrCO 3 мало растворим в воде (2·10 –3 г в 100 г при 25° С). В присутствии избытка диоксида углерода в растворе он превращается в гидрокарбонат Sr(HCO 3) 2 .

При нагревании карбонат стронция разлагается на оксид стронция и диоксид углерода. Он взаимодействует с кислотами с выделением диоксида углерода и образованием соответствующих солей:

SrCO 2 + 3HNO 3 = Sr(NO 3) 2 + CO 2 ­ + H 2 O

Основные сферы карбоната стронция в современном мире – производство кинескопов для цветных телевизоров и компьютеров, керамических ферритовых магнитов, керамических глазурей, зубной пасты, антикоррозионных и фосфоресцирующих красок, высокотехнологичной керамики, в пиротехнике. Наиболее емкими направлениями потребления являются первые два. При этом спрос на карбонат стронция в производстве телевизионного стекла повышается с ростом популярности телеэкранов более крупных размеров. Возможно, развитие технологии производства плоских телеэкранов снизит спрос на карбонат стронция для телевизионных дисплеев, однако эксперты в промышленности считают, что в ближайшие 10 лет плоские телеэкраны не станут значительными конкурентами традиционных.

Европа потребляет львиную долю карбоната стронция для производства ферритовых стронциевых магнитов, которые используются в автомобильной промышленности, где они применяются для магнитных задвижек в дверцах автомобилей и тормозных системах. В США и Японии карбонат стронция используют преимущественно в производстве телевизионного стекла.

В течение многих лет крупнейшими в мире производителями карбоната стронция являлись Мексика и Германия, производственные мощности по выпуску этого товара в которых сейчас составляют соответственно 103 тыс. и 95 тыс. т в год. В Германии используют в качестве сырья импортный целестин, а мексиканские заводы работают на местном сырье. В последнее время годовые мощности по производству карбоната стронция расширились в Китае (примерно до 140 тыс. т). Китайский карбонат стронция активно продается в Азии и Европе.

Нитрат стронция Sr(NO 3) 2 хорошо растворим в воде (70,5 г в 100 г при 20° С). Его получают взаимодействием металлического стронция, оксида, гидроксида или карбоната стронция с азотной кислотой.

Нитрат стронция – компонент пиротехнических составов для сигнальных, осветительных и зажигательных ракет. Он окрашивает пламя в карминово-красный цвет. Хотя другие соединения стронция придают пламени такую же окраску, в пиротехнике предпочитают использовать именно нитрат: он не только окрашивает пламя, но одновременно служит окислителем. Разлагаясь в пламени, он выделяет свободный кислород. При этом сначала образуется нитрит стронция, который затем превращается в оксиды стронция и азота.

В России соединения стронция широко использовались в пиротехнических составах. Во времена Петра Первого (1672–1725) их применяли для получения «потешных огней», устраивавшихся при проведении различных торжеств и празднеств. Академик А.Е.Ферсман назвал стронций «металлом красных огней».

Сульфат стронция SrSO 4 мало растворим в воде (0,0113 г в 100 г при 0° С). При нагревании выше 1580° С он разлагается. Его получат осаждением из растворов солей стронция сульфатом натрия.

Сульфат стронция используется как наполнитель при изготовлении красок и резины и утяжелитель в буровых растворах.

Хромат стронция SrCrO 4 осаждается в виде желтых кристаллов при смешивании растворов хромовой кислоты и гидроксида бария.

Дихромат стронция, образующийся при действии кислот на хромат, хорошо растворим в воде. Для перевода хромата стронция в дихромат достаточно такой слабой кислоты, как уксусная:

2SrCrO 4 + 2CH 3 COOH = 2Sr 2+ + Cr 2 O 7 2– + 2CH 3 COO – + H 2 O

Так его можно отделить от менее растворимого хромата бария, который удается превратить в дихромат только действием сильных кислот.

Хромат стронция обладает высокой светостойкостью, он очень устойчив к воздействию высоких температур (до 1000° С), обладает хорошими пассивирующими свойствами по отношению к стали, магнию и алюминию. Хромат стронция применяется как желтый пигмент в производстве лаков и художественных красок. Его называют «стронциановый желтый». Он входит в состав грунтовок на основе водорастворимых смол и особенно грунтовок на основе синтетических смол для легких металлов и сплавов (авиагрунтовок).

Титанат стронция SrTiO 3 не растворяется в воде, однако переходит в раствор под действием горячей концентрированной серной кислоты. Его получают спеканием оксидов стронция и титана при 1200–1300° С или соосажденных труднорастворимых соединений стронция и титана выше 1000° С. Титанат стронция применяют как сегнетоэлектрик, он входит в состав пьезокерамики. В технике сверхвысоких частот он служит в качестве материала для диэлектрических антенн, фазовращателей и других устройств. Пленки из титаната стронция используют при изготовлении нелинейных конденсаторов и датчиков инфракрасного излучения. С их помощью создают слоистые структуры диэлектрик – полупроводник – диэлектрик – металл, которые применяются в фотоприемниках, запоминающих устройствах и других приборах.

Гексаферрит стронция SrO·6Fe 2 O 3 получают спеканием смеси оксида железа (III) и оксида стронция. Это соединение используют в качестве магнитного материала.

Фторид стронция SrF 2 мало растворим в воде (чуть более 0,1 г в 1 л раствора при комнатной температуре). Он не взаимодействует с разбавленными кислотами, но переходит в раствор под действием горячей соляной кислоты. В криолитовых копях Гренландии найден минерал, содержащий фторид стронция – ярлит NaF·3SrF 2 ·3AlF 3 .

Фторид стронция используется в качестве оптического и ядерного материла, компонента специальных стекол и люминофоров.

Хлорид стронция SrCl 2 хорошо растворим в воде (34,6% по массе при 20° С). Из водных растворов ниже 60,34° С кристаллизуется гексагидрат SrCl 2 ·6H 2 O, расплывающийся на воздухе. При более высоких температурах он теряет сначала 4 молекулы воды, затем еще одну, а при 250° С полностью обезвоживается. В отличие от гексагидрата хлорида кальция гексагидрат хлорида стронция мало растворим в этаноле (3,64% по массе при 6° С), что используется для их разделения.

Хлорид стронция используется в пиротехнических составах. Его применяют также в холодильной технике, медицине, косметике.

Бромид стронция SrBr 2 гигроскопичен. В насыщенном водном растворе его массовая доля составляет 50,6% при 20° С. Ниже 88,62° С из водных растворов кристаллизуется гексагидрат SrBr 2 ·6H 2 O, выше этой температуры – моногидрат SrBr 3 ·H 2 O. Гидраты полностью обезвоживаются при 345° С.

Бромид стронция получают реакцией стронция с бромом или оксида (либо карбоната) стронция с бромоводородной кислотой. Он используется в качестве оптического материала.

Иодид стронция SrI 2 хорошо растворим в воде (64,0% по массе при 20° С), хуже – в этаноле (4,3% по массе при 39° С). Ниже 83,9° С из водных растворов кристаллизуется гексагидрат SrI 2 ·6H 2 O, выше этой температуры – дигидрат SrI 2 ·2H 2 O.

Иодид стронция служит в качестве люминесцентного материала в сцинтилляционных счетчиках.

Сульфид стронция SrS получают при нагревании стронция с серой или восстановлением сульфата стронция углем, водородом и другими восстановителями. Его бесцветные кристаллы разлагаются водой. Сульфид стронция применяется как компонент люминофоров, фосфоресцирующих составов, средств для удаления волос в кожевенной промышленности.

Карбоксилаты стронция можно получить при взаимодействии гидроксида стронция с соответствующими карбоновыми кислотами. Стронциевые соли жирных кислот («стронциевые мыла») используют для изготовления специальных консистентных смазок.

Стронциеорганические соединения . Чрезвычайно активные соединения состава SrR 2 (R = Me, Et, Ph, PhCH 2 и т.д.) могут быть получены при использовании HgR 2 (часто лишь при низкой температуре).

Бис(циклопентадиенил)стронций является продуктом прямой реакции металла с или с самим циклопентадиеном

Биологическая роль стронция.

Стронций – составная часть микроорганизмов, растений и животных. У морских радиолярий скелет состоит из сульфата стронция – целестина. Морские водоросли содержат 26–140 мг стронция на 100 г сухого вещества, наземные растения – около 2,6, морские животные – 2–50, наземные животные – около 1,4, бактерии – 0,27–30. Накопление стронция различными организмами зависит не только от их вида, особенностей, но и от соотношения содержания стронция и других элементов, главным образом кальция и фосфора, в окружающей среде.

Животные получают стронций с водой и пищей. Некоторые вещества, например полисахариды водорослей, препятствует усвоению стронция. Стронций накапливается в костной ткани, в золе которой содержится около 0,02% стронция (в других тканях – около 0,0005%).

Соли и соединения стронция относятся к малотоксичным веществам, однако при избытке стронция поражаются костная ткань, печень и мозг. Будучи близок к кальцию по химическим свойствам, стронций резко отличается от него по своему биологическому действию. Избыточное содержание этого элемента в почвах, водах и продуктах питания вызывает «уровскую болезнь» у человека и животных (по названию реки Уров в Восточном Забайкалье) – поражение и деформацию суставов, задержку роста и другие нарушения.

Особенно опасны радиоактивные изотопы стронция.

В результате ядерных испытаний и аварий на АЭС в окружающую среду поступило большое количество радиоактивного стронция-90, период полураспада которого составляет 29,12 года. До тех пор, пока не были запрещены испытания атомного и водородного оружия в трех средах, число пострадавших от радиоактивного стронция росло из года в год.

В течение года после завершения атмосферных ядерных взрывов в результате самоочищения атмосферы большая часть радиоактивных продуктов, в том числе стронция-90, выпала из атмосферы на поверхность земли. Загрязнение природной среды за счет выведения из стратосферы радиоактивных продуктов ядерных взрывов, проводившихся на полигонах планеты в 1954–1980, сейчас играет второстепенную роль, вклад этого процесса в загрязнение атмосферного воздуха 90 Sr на два порядка меньше, чем от ветрового подъема пыли с почвы, загрязненной при ядерных испытаниях и в результате радиационных аварий.

Стронций-90, наряду с цезием-137, являются основными загрязняющими радионуклидами на территории России. На радиационную обстановку существенно влияет наличие загрязненных зон, появившихся вследствие аварий на Чернобыльской АЭС в 1986 и на ПО «Маяк» в Челябинской области в 1957 («Кыштымская авария»), а также в окрестностях некоторых предприятий ядерно-топливного цикла.

Сейчас время средние концентрации 90 Sr в воздухе за пределами территорий, загрязненных в результате Чернобыльской и Кыштымской аварий, вышли на уровни, наблюдавшиеся до аварии на Чернобыльской АЭС. В гидрологических системах, связанных с зонами, загрязненными при этих авариях, существенно сказывается смыв стронция-90 с поверхности почвы.

Попадая в почву, стронций вместе с растворимыми соединениями кальция поступает в растения. Больше других накапливают 90 Sr бобовые растения, корне- и клубнеплоды, меньше – злаки, в том числе зерновые, и лён. В семенах и плодах накапливается значительно меньше 90 Sr, чем в других органах (например, в листьях и стеблях пшеницы 90 Sr в 10 раз больше, чем в зерне).

Из растений стронций-90 может непосредственно или через животных перейти в организм человека. У мужчин стронций-90 накапливается в большей степени, чем у женщин. В первые месяцы жизни ребенка отложение стронция-90 на порядок выше, чем у взрослого человека, он поступает в организм с молоком и накапливается в быстро растущей костной ткани.

Радиоактивный стронций сосредотачивается в скелете и, таким образом, подвергает организм длительному радиоактивному воздействию. Биологическое действие 90 Sr связано с характером его распределения в организме и зависит от дозы b -облучения, создаваемого им и его дочерним радиоизотопом 90 Y. При длительном поступлении 90 Sr в организм даже в относительно небольших количествах, в результате непрерывного облучения костной ткани, могут развиваться лейкемия и рак костей. Полный распад стронция-90, попавшего в окружающую среду, произойдет лишь через несколько сотен лет.

Применение стронция-90.

Радиоизотоп стронция применяется в производстве атомных электрических батарей. Принцип действия таких батарей основан на способности стронция-90 излучать электроны, обладающие большой энергией, преобразуемой затем в электрическую. Элементы из радиоактивного стронция, соединенные в миниатюрную батарейку (размером со спичечную коробку), способны безотказно служить без перезарядки 15–25 лет, такие батареи незаменимы для космических ракет и искусственных спутников Земли. А швейцарские часовщики с успехом используют крохотные стронциевые батарейки для питания электрочасов.

Отечественными учеными создан изотопный генератор электрической энергии для питания автоматических метеостанций на основе стронция-90. Гарантийный срок службы такого генератора – 10 лет, в течение которых он способен снабжать электрическим током нуждающиеся в нем приборы. Все обслуживание его заключается лишь в профилактических осмотрах – раз в два года. Первые образцы генератора установлены в Забайкалье и в верховьях таежной речки Кручины.

В Таллинне работает атомный маяк. Главная его особенность – радиоизотопные термоэлектрические генераторы, в которых в результате распада стронция-90 возникает тепловая энергия, преобразуемая затем в световую.

Устройства, в которых используется радиоактивный стронций, применяются для измерения толщины. Это необходимо для контроля и управления процессом производства бумаги, тканей, тонких металлических лент, пластмассовых пленок, лакокрасочных покрытий. Изотоп стронция используется в приборах для измерения плотности, вязкости и других характеристик вещества, в дефектоскопах, дозиметрах, сигнализаторах. На машиностроительных предприятиях часто можно встретить так называемые b -реле, они контролируют подачу заготовок на обработку, проверяют исправности инструмента, правильность положения детали.

При производстве материалов, являющихся изоляторами (бумага, ткани, искусственное волокно, пластмассы и т. д.), вследствие трения возникает статическое электричество. Чтобы избежать этого, пользуются ионизирующими стронциевыми источниками.

Елена Савинкина

Еще задолго до открытия стронция его нерасшифрованные соединения применяли в пиротехнике для получения красных огней. И до середины 40-х годов прошлого века стронций был прежде всего металлом фейерверков, потех и салютов. Атомный век заставил взглянуть на него по-иному. Во-первых, как на серьезную угрозу всему живому на Земле; во-вторых, как на материал, могущий быть очень полезным при решении серьезных проблем медицины и техники. Но об этом позже, а начнем с истории «потешного» металла, с истории, в которой встречаются имена многих больших ученых.

Четырежды открытая «земля»

В 1764 г. в свинцовом руднике близ шотландской деревни Стронциан был найден минерал, который назвали стронцианитом . Долгое время его считали разновидностью флюорита CaF 2 или витерита BaCO 3 , но в 1790 г. английские минералоги Кроуфорд и Крюикшенк проанализировали этот минерал и установили, что в нем содержится новая «земля», а говоря нынешним языком, окисел.

Независимо от них тот же минерал изучал другой английский химик - Хоп. Придя к таким же результатам, он объявил, что в стронцианите есть новый элемент - металл стронций .

Видимо, открытие уже «витало в воздухе», потому что почти одновременно сообщил об обнаружении новой «земли» и видный немецкий химик Клапрот.

В те же годы на следы «стронциановой земли» натолкнулся и известный русский химик - академик Товий Егорович Ловиц. Его издавна интересовал минерал, известный под названием тяжелого шпата. В этом минерале (его состав BaSO 4) Карл Шееле открыл в 1774 г. окись нового элемента бария . Не знаем, отчего Ловиц был неравнодушен именно к тяжелому шпату; известно только, что ученый, открывший адсорбционные свойства угля и сделавший еще много в области общей и органической химии, коллекционировал образцы этого минерала. Но Ловиц не был просто собирателем, вскоре он начал систематически исследовать тяжелый шпат и в 1792 г. пришел к выводу, что в этом минерале содержится неизвестная примесь. Он сумел извлечь из своей коллекции довольно много - больше 100 г новой «земли» и продолжал исследовать ее свойства. Результаты исследования были опубликованы в 1795 г. Ловиц писал тогда: «Я был приятно поражен, когда прочел... прекрасную статью г-на профессора Клапрота о стронциановой земле, о которой до этого имелось очень неясное представление. Все указанные им свойства солекислых и селитрокислых средних солей во всех пунктах совершеннейшим образом совпадают со свойствами моих таких же солей. Мне оставалось только проверить. замечательное свойство стронциановой земли - окрашивать спиртовое пламя в карминовокрасный цвет, и, действительно, моя соль. обладала в полной мере этим свойством».

Так почти одновременно несколько исследователей в разных странах вплотную подошли к открытию стронция. Но в элементном виде его выделили лишь в 1808 г.

Выдающийся ученый своего времени Хэмфри Дэви понимал уже, что элемент стронциановой земли должен быть, по-видимому, щелочноземельным металлом, и получил его электролизом, т. е. тем же способом, что и кальций , магний , барий. Л если говорить конкретнее, то первый в мире металлический стронций был получен при электролизе его увлажненной гидроокиси . Выделявшийся на катоде стронций мгновенно соединялся с , образуя амальгаму. Разложив амальгаму нагреванием, Дэви выделил чистый металл.

Металл этот белого цвета, не тяжелый (плотность 2,6 г/см 3), довольно мягкий, плавящийся при 770°C. По химическим свойствам он типичный представитель семейства щелочноземельных металлов. Сходство с кальцием, магнием, барием настолько велико, что в монографиях и учебниках индивидуальные свойства стронция, как правило, не рассматриваются - их разбирают на примере кальция или магния.

И в области практических применений эти металлы не раз заступали дорогу стронцию, потому что они более доступны и дешевы. Так произошло, например, в сахарном производстве. Когда-то один химик обнаружил, что с помощью дисахарата стронция (C 12 H 22 O 4 *2SrO), нерастворимого в воде, можно выделять сахар из мелассы. Внимание к стронцию сразу же возросло, получать его стали больше, особенно в Германии и Англии. Но скоро другой химик нашел, что аналогичный сахарат кальция тоже нерастворим. И интерес к стронцию тут же пропал. Выгоднее ведь использовать дешевый, чаще встречающийся кальций.

Это не значит, конечно, что стронций совсем «потерял свое лицо». Есть качества, которые отличают и выделяют его среди других щелочноземельных металлов. О них-то мы и расскажем подробнее.

Стронций металл красных огней

Так называл стронций академик А. Е. Ферсман. Действительно, стоит бросить в пламя щепотку одной из летучих солей стронция, как пламя тотчас окрасится в яркий карминово-красный цвет. В спектре пламени появятся линии стронция.

Попробуем разобраться в сущности этого простейшего опыта. На пяти электронных оболочках атома стронция 38 электронов. Заполнены целиком три ближайшие к ядру оболочки, а на двух последних есть «вакансии». В пламени горелки электроны термически возбуждаются и, приобретая более высокую энергию, переходят с нижних энергетических уровней на верхние. Но такое возбужденное состояние неустойчиво, и электроны возвращаются на более выгодные нижние уровни, выделяя при этом энергию в виде световых квантов. Атом (или ион) стронция излучает преимущественно кванты с такими частотами, которые соответствуют длине красных и оранжевых световых волн. Отсюда карминово-красный цвет пламени.

Это свойство летучих солей стронция сделало их незаменимыми компонентами различных пиротехнических составов. Красные фигуры фейерверков, красные огни сигнальных и осветительных ракет - «дело рук» стронция.

Чаще всего в пиротехнике используют нитрат Sr(NO 3) 2 , оксалат SrC 2 O 4 и карбонат SrCO 3 стронция. Нитрату стронция отдают предпочтение: он не только окрашивает пламя, но и одновременно служит окислителем. Разлагаясь в пламени, он выделяет свободный кислород:

Sr(NO 3) 2 → SrO + N2 + 2,502

Окись стронция SrO окрашивает пламя лишь в розовый цвет. Поэтому в пиротехнические составы вводят хлор в том или ином виде (обычно в виде хлорорганических соединений), чтобы его избыток сдвинул равновесие реакции вправо:

2SrO + CI 2 → 2SrCl + O 2 .

Излучение монохлорида стронция SrCl интенсивнее и ярче излучения SrO. Кроме этих компонентов, в пиротехнические составы входят органические и неорганические горючие вещества, назначение которых - давать большое неокрашенное пламя.

Рецептов красных огней довольно много. Приведем для примера два из них. Первый: Sr(NO 3) 2 - 30%, Mg - 40%, смолы - 5%,

гексахлорбензола - 5%, перхлората калия KClO 4 - 20%. Второй: хлората калия KClO 3 - 60%, SrC2O 4 - 25%, смолы - 15%. Такие составы приготовить несложно, но следует помнить, что любые, даже самые проверенные, пиротехнические составы требуют «обращения на вы». Самодеятельная пиротехника опасна...


Стронций, глазурь и эмаль

Первые глазури появились чуть ли не на заре гончарного производства. Известно, что еще в IV тысячелетии до н.э. ими покрывали изделия из глины . Заметили, что если покрыть гончарные изделия взвесью тонкоизмельченных песка, поташа и мела в воде, а затем высушить их и отжечь в печи, то грубый глиняный порошок покроется тонкой пленкой стекловидного вещества и станет гладким, блестящим. Стекловидное покрытие закрывает поры и делает сосуд непроницаемым для воздуха и влаги. Это стекловидное вещество и есть глазурь. Позже изделия из глины стали сначала покрывать красками, а затем глазурью. Оказалось, что глазурь довольно долго не дает краскам тускнеть и блекнуть. Еще позже глазури пришли в фаянсовое и фарфоровое производство. В наши дни глазурью покрывают керамику и металл, фарфор и фаянс, различные строительные изделия.

Какова же здесь роль стронция?

Чтобы ответить на этот вопрос, придется еще раз обратиться к истории. Основу глазурей составляют различные окислы. Издавна известны щелочные (поташные) и свинцовые глазури. Основу первых составляют окислы кремния , щелочных металлов (К и Na) и кальция . Во вторых присутствует еще и окись свинца . Позже стали широко использовать глазури, содержащие бор . Добавки свинца и бора придают глазурям зеркальный блеск, лучше сохраняют подглазурные краски. Однако соединения свинца ядовиты, а бор дефицитен.

В 1920 г. американец Хилл впервые применил матовую глазурь, в состав который входили окислы стронция (система Sr-Ca-Zn). Однако этот факт остался незамеченным, и только в годы второй мировой войны, когда свинец стал особо дефицитным, вспомнили об открытии Хилла. И хлынула лавина исследований: в разных странах появились десятки (!) рецептур стронциевых глазурей. Предпринимались попытки и здесь заменить стронций кальцием, но кальциевые глазури оказались неконкуренто способными.

Стронциевые глазури не только безвредны, но и доступны (карбонат стронция SrCO 3 в 3,5 раза дешевле свинцового сурика). Все положительные качества свинцовых глазурей свойственны и им. Более того, изделия, покрытые такими глазурями, приобретают дополнительную твердость, термостойкость, химическую стойкость.

На основе окислов кремния и стронция готовят также эмали - непрозрачные глазури. Непрозрачными их делают добавки окислов титана и цинка . Изделия из фарфора, особенно вазы, часто украшают глазурью «кракле». Такая ваза словно покрыта сеткой окрашенных трещин. Основа технологии «кракле» - разные коэффициенты термического расширения глазури и фарфора. Фарфор, покрытый глазурью, обжигают при температуре 1280-1300°C, затем температуру снижают до 150-220°C и еще не до конца остывшее изделие опускают в раствор красящих солей (например, солей кобальта , если нужно получить черную сетку). Эти соли заполняют возникающие трещины. После этого изделие сушат и вновь нагревают до 800-850°C - соли плавятся в трещинах и герметизируют их. Глазурь «кракле» популярна и широко распространена во многих странах мира. Произведения декоративно-прикладного искусства, выполненные в этой манере, ценят любители. Остается добавить, что использование стронциевых безборных глазурей дает большой экономический эффект.


Стронций радиоактивный

Еще одна особенность стронция, резко выделяющая его среди щелочноземельных металлов, - существование радиоактивного изотопа стронция-90, который волнует биофизиков, физиологов, радиобиологов, биохимиков и просто химиков уже давно.

В результате цепной ядерной реакции из атомов плутония и урана образуются около 200 радиоактивных изотопов. Большинство из них короткоживущие. Но в тех же процессах рождаются и ядра стронция-90, период полураспада которого 27,7 года. Стронций-90 - чистый бета-излучатель. Это значит, что он испускает потоки энергичных электронов, которые действуют на все живое на сравнительно небольших расстояниях, но очень активно. Стронций как аналог кальция активно участвует в обмене веществ и вместе с кальцием откладывается в костной ткани.

Стронций-90, а также образующийся при его распаде дочерний изотоп иттрий-90 (с периодом полураспада 64 часа, излучает бета-частицы) поражают костную ткань и, самое главное, особо чувствительный к действию радиации костный мозг. Под действием облучения в живом веществе происходят химические изменения. Нарушаются нормальная структура и функции клеток. Это приводит к серьезным нарушениям обмена веществ в тканях. А в итоге развитие смертельно опасных болезней - рака крови (лейкемия) и костей. Кроме того, излучение действует на молекулы ДНК и, следовательно, влияет на наследственность. Влияет пагубно.

Содержание стронция-90 в человеческом организме находится в прямой зависимости от общей мощности взорванного атомного оружия. Он попадает в организм при вдыхании радиоактивной пыли, образующейся в процессе взрыва и разносимой ветром на большие расстояния. Другим источником заражения служат питьевая вода, растительная и молочная пища. Но и в том и в другом случаях природа ставит естественные препоны на пути стронция-90 в организм. В тончайшие структуры дыхательных органов могут попасть лишь частицы величиной до 5 мкм, а таких частиц при взрыве образуется немного. Во-вторых, стронций при взрыве выделяется в виде окиси SrO, растворимость которой в жидкостях организма весьма ограничена. Проникновению стронция через пищевую систему препятствует фактор, который называют «дискриминацией стронция в пользу кальция». Он выражается в том, что при одновременном присутствии кальция и стронция организм предпочитает кальций. Соотношение Ca: Sr в растениях вдвое больше, чем в почвах. Далее, в молоке и сыре содержание стронция в 5-10 раз меньше, чем в траве, идущей на корм скоту.

Однако целиком полагаться на эти благоприятные факторы не приходится - они способны лишь в какой-то степени предохранить от стронция-90. Не случайно до тех пор, пока не были запрещены испытания атомного и водородного оружия в трех средах, число пострадавших от стронция росло из года в год. Но те же страшные свойства стронция-90 - и мощную ионизацию, и большой период полураспада - удалось обратить на благо человека.

Радиоактивный стронций нашел применение в качестве изотопного индикатора при исследовании кинетики различных процессов. Именно этим методом в опытах с животными установили, как ведет себя стронций в живом организме: где преимущественно он локализуется, каким образом участвует в обмене веществ и так далее. Тот же изотоп применяют в качестве источника излучения при лучевой терапии. Аппликаторами со стронцием-90 пользуются при лечении глазных и кожных болезней. Препараты стронция-90 применяют также в дефектоскопах, в устройствах для борьбы со статическим электричеством, в некоторых исследовательских приборах, в атомных батареях. Нет открытий принципиально вредных - все дело в том, в чьих руках окажется открытие. История радиоактивного стронция - тому подтверждение.

Стронций — элемент главной подгруппы второй группы, пятого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 38. Обозначается символом Sr (лат. Strontium). Простое вещество стронций — мягкий, ковкий и пластичный щёлочноземельный металл серебристо-белого цвета. Обладает высокой химической активностью, на воздухе быстро реагирует с влагой и кислородом, покрываясь жёлтой оксидной плёнкой.

38 Стронций → Иттрий
Свойства атома
Название, символ, номер

Стронций / Strontium (Sr), 38

Атомная масса
(молярная масса)

87,62(1) а. е. м. (г/моль)

Электронная конфигурация
Радиус атома
Химические свойства
Ковалентный радиус
Радиус иона
Электроотрицательность

0,95 (шкала Полинга)

Электродный потенциал
Степени окисления
Энергия ионизации
(первый электрон)

549,0 (5,69) кДж/моль (эВ)

Термодинамические свойства простого вещества
Плотность (при н. у.)
Температура плавления
Температура кипения
Уд. теплота плавления

9,20 кДж/моль

Уд. теплота испарения

144 кДж/моль

Молярная теплоёмкость

26,79 Дж/(K·моль)

Молярный объём

33,7 см³/моль

Кристаллическая решётка простого вещества
Структура решётки

кубическая гранецентрированая

Параметры решётки
Температура Дебая
Прочие характеристики
Теплопроводность

(300 K) (35,4) Вт/(м·К)

В 1764 г. в свинцовом руднике близ шотландской деревни Стронциан был найден минерал, который назвали стронцианитом. Долгое время его считали разновидностью флюорита CaF2 или витерита ВаCO3, но в 1790 г. английские минералоги Кроуфорд и Крюикшенк проанализировали этот минерал и установили, что в нем содержится новая «земля», а говоря нынешним языком, окисел.

Независимо от них тот же минерал изучал другой английский химик - Хоп. Придя к таким же результатам, он объявил, что в стронцианите есть новый элемент - металл стронций.

Видимо, открытие уже «витало в воздухе», потому что почти одновременно сообщил об обнаружении новой «земли» и видный немецкий химик Клапрот.

В те же годы на следы «стронциановой земли» натолкнулся и известный русский химик - академик Товий Егорович Ловиц. Его издавна интересовал минерал, известный под названием тяжелого шпата. В этом минерале (его состав BaSО4) Карл Шееле открыл в 1774 г. окись нового элемента бария. Не знаем, отчего Ловиц был неравнодушен именно к тяжелому шпату; известно только, что ученый, открывший адсорбционные свойства угля и сделавший еще много в области общей и органической химии, коллекционировал образцы этого минерала. Но Ловиц не был просто собирателем, вскоре он начал систематически исследовать тяжелый шпат и в 1792 г. пришел к выводу, что в этом минерале содержится неизвестная примесь. Он сумел извлечь из своей коллекции довольно много - больше 100 г новой «земли» и продолжал исследовать ее свойства. Результаты исследования были опубликованы в 1795 г.

Так почти одновременно несколько исследователей в разных странах вплотную подошли к открытию стронция. Но в элементарном виде его выделили лишь в 1808 г.

Выдающийся ученый своего времени Хэмфри Дэви понимал уже, что элемент стронциановой земли должен быть, по-видимому, щелочноземельным металлом, и получил его электролизом, т.е. тем же способом, что и кальций, магний, барий. А если говорить конкретнее, то первый в мире металлический стронций был получен при электролизе его увлажненной гидроокиси. Выделявшийся на катоде стронций мгновенно соединялся с ртутью, образуя амальгаму. Разложив амальгаму нагреванием, Дэви выделил чистый металл.

Стронций (лат. Strontium), Sr, химический элемент II группы периодической системы Менделеева, атомный номер 38, атомная масса 87,62, серебристо-белый металл. Природный Стронций состоит из смеси четырех стабильных изотопов: 84 Sr, 86 Sr, 87 Sr и 88 Sr; наиболее распространен 88 Sr (82,56%).

Искусственно получены радиоактивные изотопы с массовыми числами от 80 до 97, в т.ч. 90 Sr (T ½ = 27,7 года), образующийся при делении урана. В 1790 году шотландский врач А. Крофорд, исследуя найденный близ населенного пункта Строншиан (в Шотландии) минерал, обнаружил, что он содержит неизвестную ранее "землю", которая была названа стронцианом. Позднее оказалось, что это оксид Стронция SrO. В 1808 Г. Дэви, подвергая электролизу с ртутным катодом смесь увлажненного гидрооксида Sr(OH) 2 с оксидом ртути, получил амальгаму Стронция.

Распространение Стронция в природе. Среднее содержание Стронция в земной коре (кларк) 3,4·10 -2 % по массе, в геохимических процессах он является спутником кальция. Известно около 30 минералов Стронция; важнейшие - целестин SrSO 4 и стронцианит SrCO 3 . В магматических породах Стронций находится преимущественно в рассеянном виде и входит в виде изоморфной примеси в кристаллическую решетку кальциевых, калиевых и бариевых минералов. В биосфере Стронций накапливается в карбонатных породах и особенно в осадках соленых озер и лагун (месторождения целестина).

Физические свойства Стронция. При комнатной температуре решетка Стронция кубическая гранецентрированная (α-Sr) с периодом а = 6,0848Å; при температуре выше 248 °С превращается в гексагональную модификацию (β-Sr) с периодами решетки а = 4,32Å и с = 7,06 Å; при 614 °C переходит в кубическую объемноцентрированную модификацию (γ-Sr) с периодом а = 4,85Å. Атомный радиус 2,15Å, ионный радиус Sr 2+ 1,20Å. Плотность α-формы 2,63 г/см 3 (20 °C); t пл 770 °С, t кип 1383 °C; удельная теплоемкость 737,4 кдж/(кг·К) ; удельное электросопротивление 22,76·10 -6 ом·см -1 . Стронций парамагнитен, атомная магнитная восприимчивость при комнатной температуре 91,2·10 -6 . Стронций - мягкий пластичный металл, легко режется ножом.

Химические свойства. Конфигурация внешней электронной оболочки атома Sr 5s 2 ; в соединениях обычно имеет степень окисления +2. Стронций - щелочноземельный металл, по химические свойствам сходен с Ca и Ba. Металлический Стронций быстро окисляется на воздухе, образуя желтоватую поверхностную пленку, содержащую оксид SrO, пероксид SrO 2 и нитрид Sr 3 N 2 . С кислородом при обычных условиях образует оксид SrO (серовато-белый порошок), которая на воздухе легко переходит в карбонат SrCO 3 ; с водой энергично взаимодействует, образуя гидроксид Sr(OH) 2 - основание более сильное, чем Ca(OH) 2 . При нагревании на воздухе легко воспламеняется, а порошкообразный Стронций на воздухе самовозгорается, поэтому хранят Стронций в герметически закрытых сосудах под слоем керосина. Бурно разлагает воду с выделением водорода и образованием гидроксида. При повышенных температурах взаимодействует с водородом (>200 °C), азотом (>400 °C), фосфором, серой и галогенами. При нагревании образует интерметаллические соединения с металлами, например SrPb 3 , SrAg 4 , SrHg 8 , SrHg 12 . Из солей Стронция хорошо растворимы в воде галогениды (кроме фторида), нитрат, ацетат, хлорат; трудно растворимы карбонат, сульфат, оксалат и фосфат. Осаждение Стронция в виде оксалата и сульфата используют для его аналитического определения. Многие соли Стронция образуют кристаллогидраты, содержащие от 1 до 6 молекул кристаллизационной воды. Сульфид SrS постепенно гидролизуется водой; нитрид Sr 3 N 2 (черные кристаллы) легко разлагается водой с выделением NH 3 и Sr(OH) 2 . Стронций хорошо растворяется в жидком аммиаке, давая растворы темно-синего цвета.

Получение Стронция. Основным сырьем для получения соединений Стронция служат концентраты от обогащения целестина и стронцианита. Металлический Стронций получают восстановлением оксида Стронция алюминием при 1100-1150 °C:

4SrO+ 2Al = 3Sr+ SrO·Al 2 O 3 .

Процесс ведут в электровакуумных аппаратах [при 1 н/м 2 (10 -2 мм рт. ст.)] периодического действия. Пары Стронция конденсируются на охлажденной поверхности вставленного в аппарат конденсатора; по окончании восстановления аппарат заполняют аргоном и расплавляют конденсат, который стекает в изложницу. Стронций получают также электролизом расплава, содержащего 85% SrCl 2 и 15% KCl, однако при этом процессе выход по току невелик, а металл оказывается загрязненным солями, нитридом и оксидом. В промышленности электролизом с жидким катодом получают сплавы Стронция, например, с оловом.

Применение Стронция. Стронций служит для раскисления меди и бронзы. 90 Sr - источник β-излучения в атомных электрических батареях. Стронций используется для изготовления люминофоров и фотоэлементов, а также сильно пирофорных сплавов. Оксид Стронция входит в состав некоторых оптических стекол и оксидных катодов электронных ламп. Соединения Стронция окрашивают пламя в интенсивный вишнево-красный цвет, благодаря чему некоторые из них находят применение в пиротехнике. Стронцианит вводят в шлак для очистки высокосортных сталей от серы и фосфора; карбонат Стронция используют в неиспаряющихся геттерах, а также добавляют в состав стойких к атмосферным воздействиям глазурей и эмалей для покрытия фарфора, сталей и жаропрочных сплавов. Хромат SrCrO 4 - очень устойчивый пигмент для изготовления художественных красок, титанат SrTiO 3 применяют как сегнетоэлектрик, он входит в состав пьезокерамики. Стронциевые соли жирных кислот ("стронциевые мыла") используют для изготовления специальных консистентных смазок.

Соли и соединения Стронций малотоксичны; при работе с ними следует руководствоваться правилами техники безопасности с солями щелочных и щелочноземельных металлов.

Стронций в организме. Стронций - составная часть микроорганизмов, растений и животных. У морских радиолярий (акантарий) скелет состоит из сульфата Стронция - целестина. Морские водоросли содержат 26-140 мг Стронция на 100 г сухого вещества, наземные растения - 2,6, морские животные - 2-50, наземные животные - 1,4, бактерии - 0,27-30. Накопление Стронция различными организмами зависит не только от их вида, особенностей, но и от соотношения в среде Стронция с другими элементами, главным образом с Ca и P, а также от адаптации организмов к определенной геохимической среде.

Животные получают Стронций с водой и пищей. Всасывается Стронций тонким, а выделяется в основном толстым кишечником. Ряд веществ (полисахариды водорослей, катионообменные смолы) препятствует усвоению Стронция. Главное депо Стронция в организме - костная ткань, в золе которой содержится около 0,02% Стронция (в других тканях - около 0,0005%). Избыток солей Стронций в рационе крыс вызывает "стронциевый" рахит. У животных, обитающих на почвах со значит, количеством целестина, наблюдается повышенное содержание Стронция в организме, что приводит к ломкости костей, рахиту и другим заболеваниям. В биогеохимических провинциях, богатых Стронцием (ряд районов Центральной и Восточной Азии, Северной Европы и других), возможна так называемых уровская болезнь.

Стронций-90. Среди искусственных изотопов Стронций его долгоживущий радионуклид 90 Sr - один из важных компонентов радиоактивного загрязнения биосферы. Попадая в окружающую среду, 90 Sr характеризуется способностью включаться (главным образом вместе с Ca) в процессы обмена веществ у растений, животных и человека. Поэтому при оценке загрязнения биосферы 90 Sr принято рассчитывать отношение 90 Sr/Ca в стронциевых единицах (1 с. е. = 1 мк мккюри 90 Sr на 1 г Ca). При передвижении 90 Sr и Ca по биологическим и пищевым цепям происходит дискриминация Стронций, для количественного выражения которой находят "коэффициент дискриминации", отношение 90 Sr/Ca в последующем звене биологической или пищевой цепи к этой же величине в предыдущем звене. В конечном звене пищевой цепи концентрация 90 Sr, как правило, значительно меньше, чем в начальном.

В растения 90 Sr может поступать непосредственно при прямом загрязнении листьев или из почвы через корни (при этом большое влияние имеет тип почвы, ее влажность, рН, содержание Ca и органических веществ и т. д.). Относительно больше накапливают 90 Sr бобовые растения, корне- и клубнеплоды, меньше - злаки, в т. ч. зерновые, и лен. В семенах и плодах накапливается значительно меньше 90 Sr, чем в других органах (например, в листьях и стеблях пшеницы 90 Sr в 10 раз больше, чем в зерне). У животных (поступает в основном с растительной пищей) и человека (поступает в основном с коровьим молоком и рыбой) 90 Sr накапливается главным образом в костях. Величина отложения 90 Sr в организме животных и человека зависит от возраста особи, количества поступающего радионуклида, интенсивности роста новой костной ткани и других. Большую опасность 90 Sr представляет для детей, в организм которых он поступает с молоком и накапливается в быстро растущей костной ткани.

Биологическое действие 90 Sr связано с характером его распределения в организме (накопление в скелете) и зависит от дозы β-облучения, создаваемого им и его дочерним радиоизотопом 90 Y. При длительном поступлении 90 Sr в организм даже в относительно небольших количествах, в результате непрерывного облучения костной ткани, могут развиваться лейкемия и рак костей. Существенные изменения в костной ткани наблюдаются при содержании 90 Sr в рационе около 1 мккюри на 1 г Ca. Заключение в 1963 году в Москве Договора о запрещении испытаний ядерного оружия в атмосфере, космосе и под водой привело к почти полному освобождению атмосферы от 90 Sr и уменьшению его подвижных форм в почве.