Устройство и виды кабельных линий электропередачи. Воздушные линии электропередачи ЛЭП: конструкция, разновидности, параметры

  • Дата: 04.03.2020

Трансформаторы осуществляют непосредственное преобразование электроэнергии - изменение величины напряжения. Распределительные устройства служат для приема электроэнергии со стороны питания трансформаторов (приемные распределительные устройства) и для распределения электроэнергии на стороне потребителей.

В последующих главах рассматривается конструктивное выполнение основных элементов систем электроснабжения, приводятся основные типы и схемы подстанций, даются основы механического расчета воздушных линий электропередачи и шинных конструкций.

1. Конструкции воздушных линий электропередачи

1.1. Общие сведения

Воздушной линией (ВЛ) называется устройство для передачи электроэнергии по проводам, расположенным на открытом воздухе и прикрепленным с помощью изоляторов и арматуры к опорам.

На рис. 1.1 показан фрагмент ВЛ. Расстояние l между соседними опорами называется пролетом . Расстояние по вертикали между прямой линией, соединяющей точки подвеса провода, и низшей точкой его провисания называется стрелой провеса провода f п . Расстояние от низшей точки провисания провода до поверхности земли называется габаритом воздушной линии h г . В верхней части опор закрепляется грозозащитный трос.

Величина габарита линии h г регламентируется ПУЭ в зависимости от напряжения ВЛ и вида местности (населенная, ненаселенная, труднодоступная). Длина гирлянды изоляторов λ и расстояние между проводами соседних фаз h п-п определяются номинальным напряжением ВЛ. Расстояние между точками подвеса верхнего провода и троса h п-т регламентируется ПУЭ исходя из требования надежной защиты проводов ВЛ от прямых ударов молнии.

Для обеспечения экономичной и надежной передачи электроэнергии необходимы проводниковые материалы, обладающие высокой электрической проводимостью (низким сопротивлением) и высокой механической прочностью. В конструктивных элементах систем электроснабжения в качестве таких материалов используются медь, алюминий, сплавы на их основе, сталь.

Рис. 1.1. Фрагмент воздушной линии электропередачи

Медь имеет низкое сопротивление и достаточно высокую прочность. Ее удельное активное сопротивление ρ = 0,018 Ом. мм2 /м, а предельное сопротивление на разрыв - 360 МПа. Однако это дорогой и дефицитный металл. Поэтому медь применяется, как правило, для выполнения обмоток трансформаторов, реже - для жил кабелей и практически не применяется для проводов воздушных линий.

Удельное сопротивление алюминия в 1,6 раза больше, предельное сопротивление на разрыв в 2,5 раза меньше, чем у меди. Большая распространенность алюминия в природе и меньшая, чем у меди, стоимость обусловили его широкое применение для проводов ВЛ.

Сталь обладает большим сопротивлением и высокой механической прочностью. Ее удельное активное сопротивление ρ = 0,13 Ом. мм2 /м, а предельное сопротивление на разрыв - 540 МПа. Поэтому в системах электроснабжения сталь используется, в частности, для увеличения механической прочности алюминиевых проводов, изготовления опор и грозозащитных тросов воздушных линий электропередачи.

1.2. Провода и тросы воздушных линий

Провода ВЛ служат непосредственно для передачи электроэнергии и различаются по конструкции и используемому проводниковому материалу. Наиболее экономически целесообразным

материалом для проводов ВЛ является алюминий и сплавы на его основе.

Медные провода для ВЛ применяются исключительно редко и при соответствующем технико-экономическом обосновании. Медные провода используются в контактных сетях подвижного транспорта, в сетях специальных производств (шахт, рудников), иногда при прохождении ВЛ вблизи морей и некоторых химических производств.

Стальные провода для ВЛ не применяются, поскольку имеют большое активное сопротивление и подвержены коррозии. Применение стальных проводов оправдывается при выполнении особенно больших пролетов ВЛ, например при переходе ВЛ через широкие судоходные реки.

Сечения проводов соответствуют ГОСТ 839-74. Шкала номинальных сечений проводов ВЛ составляет следующий ряд, мм2 :

1,5; 2,5; 4; 6; 10; 16; 25; 35; 50; 70; 95; 120; 150; 185; 240; 300; 400; 500; 600; 700; 800; 1000.

По конструктивному выполнению провода ВЛ делятся: на однопроволочные;

многопроволочные из одного металла (монометаллические); многопроволочные из двух металлов; самонесущие изолированные.

Однопроволочные провода , как следует из названия, выполняют из одной проволоки (рис. 1.2,а). Такие провода выполняются небольших сечений до 10 мм2 и используются иногда для ВЛ напряжением до 1 кВ.

Многопроволочные монометаллические провода выполняются сечением более 10 мм 2 . Эти провода изготовляются свитыми из отдельных проволок. Вокруг центральной проволоки выполняется повив (ряд) из шести проволок такого же диаметра (рис. 1.2,б). Каждый последующий повив имеет на шесть проволок больше, чем предыдущий. Скрутку соседних повивов выполняют в разные стороны для предотвращения раскручивания проволок и придания проводу более круглой формы.

Количество повивов определяется сечением провода. Провода сечением до 95 мм2 выполняются с одним повивом, сечением 120… 300 мм2 - с двумя повивами, сечением 400 мм2 и более - с тремя и более повивами. Многопроволочные провода по сравнению с однопроволочными более гибкие, удобные для монтажа, надежные в эксплуатации.

Рис. 1.2. Конструкции неизолированных проводов ВЛ

Для придания проводу большей механической прочности многопроволочные провода изготовляют со стальным сердечником 1 (рис. 1.2,в,г,д). Такие провода называются сталеалюминиевыми. Сердечник выполняется из стальной оцинкованной проволоки и может быть однопроволочным (рис.1.2,в) и многопроволочным (рис. 1.2,г). Общий вид сталеалюминиевого провода большого сечения с многопроволочным стальным сердечником показан на рис. 1.2,д.

Сталеалюминиевые провода широко применяются для ВЛ напряжением выше 1 кВ. Эти провода выпускаются различных конструкций, отличающихся соотношением сечений алюминиевой и стальной частей. Для обычных сталеалюминиевых проводов это соотношение приблизительно равно шести, для проводов облегченной конструкции - восьми, для проводов усиленной конструкции - четырем. При выборе того или иного сталеалюминиевого провода учитывают внешние механические нагрузки на провод такие, как гололед и ветер.

Провода, в зависимости от используемого материала, маркируются следующим образом:

М - медный, А - алюминиевый,

АН, АЖ - из сплавов алюминия (имеют большую механическую прочность, чем провод марки А);

АС - сталеалюминиевый; АСО - сталеалюминиевый облегченной конструкции;

АСУ - сталеалюминиевый усиленной конструкции.

В цифровом обозначении провода указывается его номинальное сечение. Например, А95 это алюминиевый провод с номинальным сечением 95 мм2 . В обозначении сталеалюминиевых проводов может дополнительно указываться сечение стального сердечника. Например,

АСО240/32 - сталеалюминиевый провод облегченной конструкции с номинальным сечением алюминиевой части 240 мм2 и сечением стального сердечника 32 мм2 .

Стойкие к коррозии алюминиевые провода марки АКП и сталеалюминиевые провода марок АСКП, АСКС, АСК имеют межпроволочное пространство, заполненное нейтральной смазкой повышенной термостойкости, противодействующей появлению коррозии. У проводов АКП и АСКП такой смазкой заполнено все межпроволочное пространство, у провода АСКС - только стальной сердечник, у провода АСК стальной сердечник заполнен нейтральной смазкой и изолирован от алюминиевой части двумя полиэтиленовыми лентами. Провода АКП, АСКП, АСКС, АСК применяются для ВЛ, проходящих вблизи морей, соленых озер и химических предприятий.

Самонесущие изолированные провода (СИП) применяются для ВЛ напряжением до 20 кВ. При напряжениях до 1 кВ (рис. 1.3,а) такой провод состоит из трех фазных многопроволочных алюминиевых жил 1. Четвертая жила 2 является несущей и одновременно нулевой. Фазные жилы скручены вокруг несущей таким образом, чтобы вся механическая нагрузка воспринималась несущей жилой, изготовляемой из прочного алюминиевого сплава АВЕ.

Рис. 1.3. Самонесущие изолированные провода

Фазная изоляция 3 выполняется из термопластичного светостабилизированного или сшитого светостабилизированного полиэтилена . Благодаря своей молекулярной структуре, такая изоляция обладает очень высокими термомеханическими свойствами и большой стойкостью к воздействию солнечной радиации и атмосферы. В некоторых конструкциях СИП нулевая несущая жила выполняется с изоляцией.

Конструкция СИП для напряжений выше 1 кВ приведена на рис. 1.3,б. Такой провод выполняется однофазным и состоит из

токоведущей сталеалюминиевой жилы 1 и изоляции 2, выполненной из сшитого светостабилизированного полиэтилена.

ВЛ с СИП по сравнению с традиционными ВЛ имеют следующие преимущества:

меньшие потери напряжения (улучшение качества электроэнергии), благодаря меньшему, приблизительно в три раза, реактивному сопротивлению трехфазных СИП;

не требуют изоляторов; практически отсутствует гололедообразование;

допускают подвеску на одной опоре нескольких линий различного напряжения;

меньшие расходы на эксплуатацию, благодаря сокращению, приблизительно на 80%, объемов аварийно-восстановительных работ; возможность использования более коротких опор благодаря

меньшему допустимому расстоянию от СИП до земли; уменьшение охранной зоны, допустимых расстояний до зданий и

сооружений, ширины просеки в лесистой местности; практическое отсутствие возможности возникновения пожара в

лесистой местности при падении провода на землю; высокая надежность (5-кратное снижение числа аварий по

сравнению с традиционными ВЛ); полная защищенность проводника от воздействия влаги и

коррозии.

Стоимость ВЛ с самонесущими изолированными проводами выше, чем традиционных ВЛ.

Провода ВЛ напряжением 35 кВ и выше защищаются от прямого удара молнии грозозащитным тросом , закрепляемым в верхней части опоры (см. рис. 1.1). Грозозащитные тросы являются элементами ВЛ, аналогичными по своей конструкции многопроволочным монометаллическим проводам. Тросы выполняют из стальных оцинкованных проволок. Номинальные сечения тросов соответствуют шкале номинальных сечений проводов. Минимальное сечение грозозащитного троса 35 мм2 .

При использовании грозозащитных тросов в качестве высокочастотных каналов связи вместо стального троса используется сталеалюминиевый провод с мощным стальным сердечником, сечение которого соизмеримо или больше сечения алюминиевой части.

1.3. Опоры воздушных линий

Основное назначение опор - поддержка проводов на требуемой высоте над землей и наземными сооружениями. Опоры состоят из вертикальных стоек, траверс и фундаментов. Основными материалами, из которых изготавливаются опоры, являются древесина хвойных пород, железобетон и металл.

Опоры из древесины простые в изготовлении, транспортировке и эксплуатации, применяются для ВЛ напряжением до 220 кВ включительно в районах лесоразработок или близких к ним. Основной недостаток таких опор - подверженность древесины загниванию. Для увеличения срока службы опор древесину просушивают и пропитывают антисептиками, препятствующими развитию процесса гниения.

Вследствие ограниченной строительной длины древесины, опоры выполняют составными (рис 1.4,а). Деревянную стойку 1 сочленяют металлическими бандажами 2 с железобетонной приставкой 3. Нижняя часть приставки заглубляется в грунте. Опоры, соответствующие рис. 1.4,а, применяются на напряжение до 10 кВ включительно. На более высокие напряжения опоры из древесины выполняют П-образными (портальными). Такая опора показана на рис. 1.4,б.

Следует отметить, что в современных условиях необходимости сохранения лесов целесообразно сокращение применения опор из древесины.

Железобетонные опоры состоят из железобетонной стойки 1 и траверс 2 (рис. 1.4,в). Стойка представляет собой пустотелую конусную трубу с малым наклоном образующих конуса. Нижняя часть стойки заглубляется в грунте. Траверсы изготавливаются из стального оцинкованного проката. Эти опоры долговечнее опор из древесины, просты в обслуживании, требуют меньше металла, чем стальные опоры.

Основные недостатки опор из железобетона: большой вес, затрудняющий транспортировку опор в труднодоступные места трассы ВЛ, и относительно малая прочность бетона на изгиб.

Для увеличения прочности опор на изгиб при изготовлении железобетонной стойки используется предварительно напряженная (растянутая) стальная арматура.

Для обеспечения высокой плотности бетона при изготовлении стоек опор применяют виброуплотнение и центрифугирование бетона.

Стойки опор ВЛ напряжением до 35 кВ выполняют из вибробетона, при более высоких напряжениях - из центрифугированного бетона.

Рис. 1.4. Промежуточные опоры ВЛ

Стальные опоры обладают высокой механической прочностью и большим сроком службы. Эти опоры с помощью сварки и болтовых соединений собираются из отдельных элементов, поэтому имеется возможность создания опор практически любой конструкции (рис. 1.4,г). В отличие от опор из древесины и железобетона металлические опоры устанавливаются на железобетонных фундаментах 1.

Стальные опоры являются дорогими. Кроме того, сталь подвержена коррозии. Для увеличения срока службы опор их покрывают антикоррозийными составами и окрашивают. Очень эффективной против коррозии является горячая оцинковка стальных опор.

Опоры из алюминиевых сплавов эффективны при сооружении ВЛ в условиях труднодоступных трасс. Вследствие стойкости алюминия к коррозии, эти опоры не нуждаются в антикоррозийном покрытии. Однако высокая стоимость алюминия существенно ограничивает возможности использования таких опор.

При прохождении по определенной территории воздушная линия может менять направление, пересекать различные инженерные

сооружения и естественные преграды, подключаться к шинам распределительных устройств подстанций. На рис. 1.5 показан вид сверху фрагмента трассы ВЛ. Из этого рисунка видно, что разные опоры работают в разных условиях и, следовательно, должны иметь отличающуюся конструкцию. По конструктивному исполнению опоры делятся:

на промежуточные (опоры 2, 3, 7), устанавливаемые на прямом участке ВЛ;

угловые (опора 4), устанавливаемые на поворотах трассы ВЛ; концевые (опоры 1 и 8), устанавливаемые в начале и конце ВЛ; переходные (опоры 5 и 6), устанавливаемые в пролете

пересечения воздушной линией какого-либо инженерного сооружения, например железной дороги.

Рис. 1.5. Фрагмент трассы ВЛ

Промежуточные опоры предназначены для поддерживания проводов на прямом участке ВЛ. Провода с этими опорами не имеют жесткого соединения, так как крепятся с помощью поддерживающих гирлянд изоляторов. На эти опоры действуют силы тяжести проводов, тросов, гирлянд изоляторов, гололеда, а также ветровые нагрузки. Примеры промежуточных опор приведены на рис. 1.4.

На концевые опоры дополнительно воздействует сила тяжения Т проводов и тросов, направленная вдоль линии (рис. 1.5). На угловые опоры дополнительно воздействует сила тяжения Т проводов и тросов, направленная по биссектрисе угла поворота ВЛ.

Переходные опоры в нормальном режиме ВЛ выполняют роль промежуточных опор. Эти опоры принимают на себя тяжение проводов и тросов при их обрыве в соседних пролетах и исключают недопустимое провисание проводов в пролете пересечения.

Концевые, угловые и переходные опоры должны быть достаточно жесткими и не должны отклоняться от вертикального

положения при воздействии на них силы тяжения проводов и тросов. Такие опоры выполняются в виде жестких пространственных ферм или с применением специальных тросовых растяжек и называются анкерными опорами . Провода с анкерными опорами имеют жесткое соединение, так как крепятся с помощью натяжных гирлянд изоляторов.

Рис. 1.6. Анкерные угловые опоры ВЛ

Анкерные опоры из древесины выполняются А-образными при напряжениях до 10 кВ и АП-образными при более высоких напряжениях. Железобетонные анкерные опоры имеют специальные тросовые растяжки (рис. 1.6,а). Металлические анкерные опоры имеют более широкую базу (нижнюю часть), чем промежуточные опоры (рис. 1.6,б).

По количеству проводов, подвешиваемых на одной опоре, различают одноцепные и двухцепные опоры . На одноцепных опорах подвешивается три провода (одна трехфазная цепь), на двухцепных - шесть проводов (две трехфазных цепи). Одноцепные опоры приведены на рис. 1.4,а,б,г и рис. 1.6,а; двухцепные - на рис. 1.4,в и рис. 1.6,б.

Двухцепная опора по сравнению с двумя одноцепными является более дешевой. Надежность передачи электроэнергии по двухцепной линии несколько ниже, чем по двум одноцепным.

Опоры из древесины в двухцепном исполнении не изготовляются. Опоры ВЛ напряжением 330 кВ и выше изготовляются только в одноцепном исполнении с горизонтальным расположением проводов (рис. 1.7). Такие опоры изготовляются П- образными (портальными) или V-образными с тросовыми растяжками.

Рис. 1.7. Опоры ВЛ напряжением 330 кВ и выше

Среди опор ВЛ отдельно выделяются опоры, имеющие специальную конструкцию. Это ответвительные, повышенные и транспозиционные опоры. Ответвительные опоры предназначены для промежуточного отбора мощности от ВЛ. Повышенные опоры устанавливаются в больших пролетах, например, при переходе через широкие судоходные реки. На транспозиционных опорах осуществляется транспозиция проводов.

Несимметричное расположение проводов на опорах при большой длине ВЛ приводит к несимметрии напряжений фаз. Симметрирование фаз за счет изменения взаимного расположения проводов на опоре называется транспозицией. Транспозиция предусматривается на ВЛ напряжением 110 кВ и выше длиной более 100 км и осуществляется на специальных транспозиционных опорах. Провод каждой фазы проходит первую треть длины ВЛ на одном, вторую треть - на другом и третью - на третьем месте. Такое перемещение проводов называется полным циклом транспозиции

Усиленно развивающаяся промышленность требует введения современных мощностей для образования и передачи электроэнергии.

Кабельные линии интегрируются в кабельную систему коммуникаций, являющейся фундаментом большой энергетической системы.

Воздушные и кабельные линии электропередачи применяются в современном строительстве. Положительной особенностью кабельных линий, является возможность их проведения в малодоступных местах. В последнее время, воздушные линии смело заменяют кабельными, по причине ограничения земельных участков, – необходимых для установки фиксирующих опор.

Техническая характеристика энергокабелей

В согласии с ГОСТ, кабели производят силового и контрольного назначения. Кабельные силовые линии предназначены передавать, распределять электроэнергию в электроустановках. Контрольные – используют для организации цепей контроля, передачи сигналов, ДУ и автоматики. Линии электрической передачи (ЛЭП) от 6 до 10 кВ и более, выполняются силовым кабелем.

Внутри СК может находиться 1, 2, 3 или 4 изолированные жилы, герметично закупоренных защитной пленкой (Рис.1).

Рис.1 трехжильный СК «ААБ»: 1 – сегментные жилы; 2,3,4 – изолирующий материал; 5-герметическая оболочка; 6,7,8 – завершающий защитный покров.

Токоведущие жилы бывают алюминиевого и медного происхождения, в конструкции СК, обычно, используют алюминиевый материал. Жилы могут быть многопроволочные и однопроволочные (при маркировке добавляется значение «ож»).

Изоляция. При изготовлении кабеля проводят изоляцию жил, она может выполняться специальным резиновым, бумажным или пластмассовым материалом. Для силовых конструкций, чаще всего, применяют изоляцию из пластмассового материала и, пропитанной специальным составом, бумаги.

У кабелей с напряжением до 10 кВ, изолируется по отдельности каждая жилка (бумажная изоляция). Затем осуществляют поясную изоляцию – все жилы вместе изолируют от оболочки. Зазоры между жилами наполняются бумажными жгутами.

Упомянутая техника изоляции делает кабель меньшим в диаметре, наделяет его нужной электропрочностью.

Защитная оболочка . Применяют в качестве герметизирующего материала, предотвращая повреждение кабельной конструкции в случае воздействия внешних факторов.

Оболочка может быть выполнена:

  • часто из алюминия;
  • свинца (для кабельной линии электропередач в воде);
  • резины (полихлоропреновый каучук);
  • пластика (материал поливинилхлорид).

Защитный слой . Выполняет свои функции, относительно кабельной оболочки. Служит преградой от внешних воздействий, защищает внутреннюю структуру от механических повреждений и образования коррозии. В зависимости от предназначения кабеля, его защитный покров может состоять из подушки, брони и внешнего покрова.

Бронированные конструкции применяют в создании кабельных линий электропередач, используемых для прокладывания в воде и земле. Их защитный слой, с внешней стороны, снабжается дополнительно предохраняющим от химических воздействий пластом.

Правила маркирования

Маркирование силовых кабелей составляют из символов, обозначающих материал, применяемый для изготовления: жил, изоляции, оболочки и защитного слоя. Наименование очень важно при выборе кабелей для прокладки воздушных и кабельных линий электропередач.

Использование медных жил не имеет символики, алюминиевые – в начале названия, отмечают буквой «А».

Обозначения также не имеет бумажная изоляция, все остальные изолирующие материалы:

  • П – полиэтиленовая;
  • В – поливинилхлоридная;
  • Р – резиновая изоляция.

Следующий символ соответствует материалу, из которого выполнена защитная оболочка:

  • А – алюминий;
  • В – поливинилхлорид;
  • С – свинец;
  • П – полиэтилен;
  • Р – резина.

Завершается маркировка буквами указывающими вид защитного слоя:

  • Г – отсутствует броня и внешнее преграждающее покрытие;
  • (Г) – гофрированный алюминиевый слой;
  • Т – усиленный свинцовый слой;
  • Шв – гладкий алюминиевый слой в поливинилхлоридовом шланге.

Стоящая в конце маркирования буква «В», – кабель с обедненной пропиткой. Кабельные линии электропередач с обедненной пропитанной изоляцией и свинцовой оболочкой, прокладывают на трасах с перепадом высот до 100 м. Ограничения исключаются при использовании в конструкции алюминиевой оболочки.

Буква «Ц» – говорит о применении бумажной изоляции пропитанной нестекающей массой изготовленной на основе церезина. Кабель данного типа используют для организации кабельных линий электропередач на крутонаклонных трассах. Без ограничения в перепадах высот. После буквенной маркировки ставятся цифры, обозначающие сечение токопроводящих жил.

Монтаж кабельных линий

Монтаж высоковольтных линий электропередач может осуществляться как внутри, так и снаружи сооружений.

Воздушные и кабельные линии электропередач имеют между собой значительные отличия. ВЛ – используют для передачи энергии или ее распределения по проводам проходящим на открытом воздухе. Воздушные кабельные линии крепятся к опорам с помощью кронштейнов и арматуры.

Кабельные линии электропередач прокладывают:

  • В земляных траншеях. Чтобы исключить повреждения новой кабельной линии при ее прокладывании в траншеи, дно рва засыпают слоем песка или провеянной землей. Таким образом, делают мягкую подушку толщиной 10 см. После прокладки подземной кабельной линии ее засыпают мягким земляным слоем толщиной 10 см. Поверх него кладут бетонные плиты, необходимые для исключения механических повреждений, ров засыпают и утрамбовывают землей.

Подземные кабельные линии помимо достоинств, имеют большой недостаток. При повреждении кабельной системы придется вскрывать траншею, перекрывать проезжую или пешеходную зону. Несмотря на это, прокладывание кабельных линий электропередач в траншеях, часто используется на внутренних территориях жилмассивов.

  • В асбестоцементных трубах . Новые кабельные линии могут прокладываться под проезжей и пешеходной частью, с использованием асбестовых труб.

В земляные канавы укладывают от 6 до 10 труб, на расстоянии 25-75 метров строят колодцы, посредством которых монтируют кабельные линии электропередач.

Основными достоинствами данного метода прокладки является защита кабельной линии электропередач от повреждений. Оперативность и простота замены участка поврежденной кабельной системы, без необходимости вскрытия пешеходных зон. Но и стоимость такой конструкции достаточно высока.

  • В тоннелях и подземных коллекторах . Данный вид проекта кабельной линии был разработан в связи с ограниченным объемом требуемых мощностей, промышленными предприятиями современных городов.

Подобный метод прокладки дает возможность оперативно осуществлять поиск повреждения, своевременно выполнять ремонтные работы. Часть поврежденной кабельной линии легко заменяется новой, после чего на краях вставки монтируют муфты. Недостатком является плохое охлаждение кабельной линии электропередач, что необходимо учесть при выборе сечения.

Кабельные линии связи прокладывают в коллекторах. Если в проекте кабельная линия связи пересекается с другой кабельной системой, то она должна располагаться на уровень выше силового кабеля. А высоковольтные кабельные линии должны проходить на уровень ниже, под кабелем меньшего напряжения.

Паспорт для существующей кабельной линии

Кабельная линия электропередач должна иметь техпаспорт, для записей технического состояния системы. В паспорт кабельной линии образец можно скачать в интернете, заносятся инженером, ответственным за выполнение эксплуатационных работ, данные о проведенных испытаниях. Ведется запись о ремонтных работах, о появлении механических и коррозийных повреждений.

На проект кабельной линии заводится архив, в которой собирается вся последующая техническая документация. Помимо паспорта в нее входят: протоколы, акты, отметки о повреждениях, расчет потерь в кабеле, данные о нагрузках и перегрузках на линии.

Безопасность работ в охранной зоне ЛЭП

Охранная зона для воздушных ЛЭП, согласно СНИП и ПУЭ, представляет собой пространство, идущее вдоль проложенных линий. Вертикальные параллельные плоскости, расположенные с обеих сторон линии, ограничивают пространство.

Для кабельных линий, проложенных под землей, охранное пространство создается на участке земли, ограничивается параллельными вертикальными плоскостями с обеих сторон линии (расстояние один метр от крайних кабелей).

Воздушная линия электропередачи (ВЛ) – устройство, предназначенное для передачи или распределения электрической энергии по проводам с защитной изолирующей оболочкой (ВЛЗ) или неизолированным проводам (ВЛ), находящимся на открытом воздухе и прикрепленным с помощью траверс (кронштейнов), изоляторов и линейной арматуры к опорам или другим инженерным сооружениям (мостам, путепроводам). Главными элементами ВЛ являются:

  • провода;
  • защитные тросы;
  • опора, поддерживающая провода и торосы на определенной высоте над уровнем земли или воды;
  • изоляторы, изолирующие провода от тела опоры;
  • линейная арматура.

За начало и за конец воздушной линии принимают линейные порталы распределительных устройств. По конструктивному устройству ВЛ делятся на одноцепные и многоценные, как правило 2-цепные.

Обычно ВЛ состоит из трех фаз, поэтому опоры одноцепных ВЛ напряжением выше 1 кВ рассчитаны на подвеску трёх фазных проводов (одной цепи) (рис. 1), на опорах двухцепных ВЛ подвешивают шесть проводов (две параллельно идущие цепи). При необходимости над фазными проводами подвешивается один или два грозозащитных троса. На опорах ВЛ распределительной сети напряжением до 1 кВ подвешивается от 5 до 12 проводов для электроснабжения различных потребителей по одной ВЛ (наружное и внутреннее освещение, электросиловое хозяйство, бытовые нагрузки). ВЛ напряжением до 1 кВ с глухозаземлённой нейтралью помимо фазных снабжена нулевым проводом.

Рис. 1. Фрагменты ВЛ 220 кВ: а – одноцепной; б – двухцепной

Провода воздушных линий электропередачи в основном изготавливаются из алюминия и его сплавов, в некоторых случаях из меди и ее сплавов, выполняются из холоднотянутой проволоки, обладающей достаточной механической прочностью. Однако наибольшее распространение получили многопроволочные провода из двух металлов с хорошими механическими характеристиками и относительно невысокой стоимостью. К проводам такого типа относятся сталеалюминиевые провода с отношением площадей поперечного сечения алюминиевой и стальной части от 4,0 до 8,0. Примеры расположения фазных проводов и грозозащитных тросов показаны на рис. 2, а конструктивные параметры ВЛ стандартного ряда напряжений приведены в табл. 1.

Рис. 2. : а – треугольное; б – горизонтальное; в – шестиугольное «бочкой»; г – обратной «елкой»

Таблица 1. Конструктивные параметры воздушных линий

Номинальное

напряжение ВЛ, кВ

Расстояние между

фазными проводами, м

Длина

пролета, м

Высота Габарит
Менее 1 0,5 40 – 50 8 – 9 6 – 7
6 – 10 1,0 50 – 80 10 6 – 7
35 3 150 – 200 12 6 – 7
110 4 – 5 170 – 250 13 – 14 6 – 7
150 5,5 200 – 280 15 – 16 7 – 8
220 7 250 – 350 25 – 30 7 – 8
330 9 300 – 400 25 – 30 7,5 – 8
500 10 – 12 350 – 450 25 – 30 8
750 14 – 16 450 – 750 30 – 41 10 – 12
1150 12 – 19 33 – 54 14,5 – 17,5

Для всех приведенных вариантов расположения фазных проводов на опорах характерно несимметричное расположение проводов по отношению друг к другу. Соответственно это ведет к неодинаковому реактивному сопротивлению и проводимости разных фаз, обусловленных взаимной индуктивностью между проводами линии и как следствие к несимметрии фазных напряжений и падению напряжения.

Для того чтобы сделать емкость и индуктивность всех трех фаз цепи одинаковыми, на линии электропередачи применяют транспозицию проводов, т.е. взаимно меняют их расположение друг относительно друга, при этом каждый провод фазы проходит одну треть пути (рис. 3). Одно такое тройное перемещение называется циклом транспозиции.

Рис. 3. Схема полного цикла транспозиции участков воздушной линии электропередачи : 1, 2, 3 – фазные провода

Транспозицию фазных проводов воздушной линии электропередачи с неизолированными проводами применяют на напряжение 110 кВ и выше и при протяженности линии 100 км и больше. Один из вариантов монтажа проводов на транспозиционной опоре показан на рис. 4. Следует отметить, что транспозицию токопроводящих жил иногда применяют и в КЛ, кроме того современные технологии проектирования и сооружения ВЛ позволяют технически реализовать управление параметрами линии (управляемые самокомпенсирующиеся линии и компактные воздушные линии сверхвысокого напряжения).

Рис. 4.

Провода и защитные тросы ВЛ в определенных местах должны быть жестко закреплены на натяжных изоляторах анкерных опор (концевые опоры 1 и 7, устанавливаемые в начале и конце ВЛ, как это показано на рис. 5 и натянуты до заданного тяжения. Между анкерными опорами устанавливают промежуточные опоры, необходимые для поддержания проводов и тросов, при помощи поддерживающих гирлянд изоляторов с поддерживающими зажимами, на заданной высоте (опоры 2, 3, 6), устанавливаемые на прямом участке ВЛ; угловые (опоры 4 и 5), устанавливаемые на поворотах трассы ВЛ; переходные (опоры 2 и 3), устанавливаемые в пролете пересечения воздушной линией какого-либо естественного препятствия или инженерного сооружения, например, железной дороги или шоссе.

Рис. 5.

Расстояние между анкерными опорами называют анкерным пролетом воздушной линии электропередачи (рис. 6). Горизонтальное расстояние между точками крепления провода на соседних опорах называется длиной пролета L . Эскиз пролета ВЛ показан на рис. 7. Длину пролета выбирают в основном по экономическим соображениям, кроме переходных пролетов, учитывая, как высоту опор, так и провисание проводов и тросов, а также количество опор и изоляторов по всей длине ВЛ.

Рис. 6. : 1 – поддерживающая гирлянда изоляторов; 2 – натяжная гирлянда; 3 – промежуточная опора; 4 – анкерная опора

Наименьшее расстояние по вертикали от земли до провода при его наибольшем провисании называют габаритом линии до земли – h . Габарит линии должен выдерживаться для всех номинальных напряжений с учетом опасности перекрытия воздушного промежутка между фазными проводами и наиболее высокой точкой местности. Также необходимо учитывать экологические аспекты воздействия высоких напряженностей электромагнитного поля на живые организмы и растения.

Наибольшее отклонение фазного провода f п или грозозащитного троса f т от горизонтали под действием равномерно распределенной нагрузки от собственной массы, массы гололеда и давления ветра называют стрелой провеса. Для предотвращения схлёстывания проводов стрела провеса троса выполняется меньше стрелы провеса провода на 0,5 – 1,5 м.

Конструктивные элементы ВЛ, такие как фазные провода, тросы, гирлянды изоляторов обладают значительной массой поэтому силы действующие на одну опору достигает сотен тысяч ньютон (Н). Силы тяжения на провод от веса провода, веса натяжных гирлянд изоляторов и гололедных образований направлены по нормали вниз, а силы, обусловленные ветровым напором, по нормали в сторону от вектора ветрового потока, как это показано на рис. 7.

Рис. 7.

С целью уменьшения индуктивного сопротивления и увеличения пропускной способности ВЛ дальних передач используют различные варианты компактных ЛЭП, характерной особенностью которых является уменьшенное расстояние между фазными проводами. Компактные ЛЭП имеют более узкий пространственный коридор, меньший уровень напряженности электрического поля на уровне земли и позволяют технически реализовать управление параметрами линии (управляемые самокомпенсирующиеся линии и линии с нетрадиционной конфигурацией расщепленных фаз).

2. Кабельная линия электропередачи

Кабельная линия электропередачи (КЛ) состоит из одного или нескольких кабелей и кабельной арматуры для соединения кабелей и для присоединения кабелей к электрическим аппаратам или шинам распределительных устройств.

В отличие от ВЛ кабели прокладываются не только на открытом воздухе, но и внутри помещений (рис. 8), в земле и воде. Поэтому КЛ подвержены воздействию влаги, химической агрессивности воды и почвы, механическим повреждениям при проведении земляных работ и смещении грунта во время ливневых дождей и паводков. Конструкция кабеля и сооружений для прокладки кабеля должна предусматривать защиту от указанных воздействий.

Рис. 8.

По значению номинального напряжения кабели делятся на три группы: кабели низкого напряжения (до 1 кВ), кабели среднего напряжения (6…35 кВ), кабели высокого напряжения (110 кВ и выше). По роду тока различают кабели переменного и постоянного тока.

Силовые кабели выполняются одножильными, двухжильными, трехжильными, четырехжильными и пятижильными. Одножильными выполняются кабели высокого напряжения; двухжильными – кабели постоянного тока; трехжильными – кабели среднего напряжения.

Кабели низкого напряжения выполняются с количеством жил до пяти. Такие кабели могут иметь одну, две или три фазных жилы, а также нулевую рабочую жилу N и нулевую защитную жилу РЕ или совмещенную нулевую рабочую и защитную жилу PEN .

По материалу токопроводящих жил различают кабели с алюминиевыми и медными жилами. В силу дефицитности меди наибольшее распространение получили кабели с алюминиевыми жилами. В качестве изоляционного материала используется кабельная бумага, пропитанная маслоканифольным составом, пластмасса и резина. Различают кабели с нормальной пропиткой, обедненной пропиткой и пропиткой нестекающим составом. Кабели с обедненной или нестекающей пропиткой прокладывают по трассе с большим перепадом высот или по вертикальным участкам трассы.

Кабели высокого напряжения выполняются маслонаполненными или газонаполненными. В этих кабелях бумажная изоляция заполняется маслом или газом под давлением.

Защита изоляции от высыхания и попадания воздуха и влаги обеспечивается наложением на изоляцию герметичной оболочки. Защита кабеля от возможных механических повреждений обеспечивается броней. Для защиты от агрессивности внешней среды служит наружный защитный покров.

При изучении кабельных линий целесообразно отметить сверхпроводящие кабели для линий электропередачи в основу конструкции которых положено явление сверхпроводимости. В упрощенном виде явление сверхпроводимости в металлах можно представить следующим образом. Между электронами как между одноименно заряженными частицами действуют кулоновские силы отталкивания. Однако при сверхнизких температурах для сверхпроводящих материалов (а это 27 чистых металлов и большое количество специальных сплавов и соединений) характер взаимодействия электронов между собой и с атомной решеткой существенно видоизменяется. В результате становится возможным притягивание электронов и образование так называемых электронных (куперовских) пар. Возникновение этих пар, их увеличение, образование «конденсата» электронных пар и объясняет появление сверхпроводимости. С повышением температуры часть электронов термически возбуждается и переходит в одиночное состояние. При некоторой так называемой критической температуре все электроны становятся нормальными и состояние сверхпроводимости исчезает. То же происходит и при повышении напряженности магнитного по ля . Критические температуры сверхпроводящих сплавов и соединений, используемых в технике, составляют 10 - 18 К, т.е. от –263 до –255°С.

Первые проекты, экспериментальные модели и опытные образцы таких кабелей в гибких гофрированных криостатирующих оболочках были реализованы лишь в 70-80-е годы XX века. В качестве сверхпроводника использовались ленты на основе интерметаллического соединения ниобия с оловом, охлаждаемые жидким гелием.

В 1986 г. было открыто явление высокотемпературной сверхпроводимости , и уже в начале 1987 г. были получены проводники такого рода, представляющие собой керамические материалы, критическая температура которых была повышена до 90 К. Примерный состав первого высокотемпературного сверхпроводника YBa 2 Cu 3 O 7–d (d < 0,2). Такой сверхпроводник представляет собой неупорядоченную систему мелких кристаллов, имеющих размер от 1 до 10 мкм, находящихся в слабом электрическом контакте друг с другом. К концу XX века были начаты и к этому времени достаточно продвинуты работы по созданию сверхпроводящих кабелей на основе высокотемпературных сверхпроводников. Такие кабели принципиально отличаются от своих предшественников. Жидкий азот, применяемый для охлаждения, на несколько порядков дешевле гелия, а его запасы практически безграничны. Очень важным является то, что жидкий азот при рабочих давлениях 0,8 - 1 МПа является прекрасным диэлектриком, превосходящим по своим свойствам пропиточные составы, используемые в традиционных кабелях.

Технико-экономические исследования показывают, что высокотемпературные сверхпроводящие кабели будут более эффективными по сравнению с другими видами электропередачи уже при передаваемой мощности более 0,4 - 0,6 ГВ·А в зависимости от реального объекта применения. Высокотемпературные сверхпроводящие кабели предполагается в будущем использовать в энергетике в качестве токопроводов на электростанциях мощностью свыше 0,5 ГВт, а также глубоких вводов в мегаполисы и крупные энергоемкие комплексы. При этом необходимо реально оценивать экономические аспекты и полный комплекс работ по обеспечению надежности таких кабелей в эксплуатации.

Однако следует отметить, что при строительстве новых и реконструкции старых КЛ необходимо руководствоваться положениями ПАО «Россети», согласно которым на КЛ запрещено применять:

  • силовые кабели, не отвечающие действующим требованиям по пожарной безопасности и выделяющие большие концентрации токсичных продуктов при горении;
  • кабели с бумажно-масляной изоляцией и маслонаполненные;
  • кабели, изготовленные по технологии силанольной сшивки (силанольносшиваемые композиции содержат привитые органофункциональные силановые группы, и сшивание молекулярной цепи полиэтилена (ПЭ), приводящее к образованию пространственной структуры, в этом случае происходит за счет связи кремний-кислород-кремний (Si-O-Si), а не углерод-углерод (С-С), как это имеет место при пероксидном сшивании).

Кабельную продукцию в зависимости от конструкций подразделяют на кабели , провода и шнуры .

Кабель – полностью готовое к применению заводское электротехническое изделие, состоящее из одной или более изолированных токопроводящих жил (проводников), заключенных, как правило, в металлическую или неметаллическую оболочку, поверх которой в зависимости от условий прокладки и эксплуатации может иметься соответствующий защитный покров, в состав которого может входить броня. Силовые кабели в зависимости от класса напряжения имеют от одной до пяти алюминиевых или медных жил сечением от 1,5 до 2000 мм 2 , из них сечением до 16 мм 2 – однопроволочные, свыше – многопроволочные.

Провод – одна неизолированная или одна и более изолированных жил, поверх которых в зависимости от условий прокладки и эксплуатации может иметься неметаллическая оболочка, обмотка и (или) оплетка волокнистыми материалами или проволокой.

Шнур – две или более изолированных, или особо гибких жил сечением до 1,5 мм 2 , скрученных или уложенных параллельно, поверх которых в зависимости от условий прокладки и эксплуатации могут быть наложены неметаллическая оболочка и защитные покрытия.

Перемещение электроэнергии осуществляется при помощи ЛЭП. Такие установки должны быть надежды, а также безопасны для людей и экологии. В этой статье говорится о том, что представляет собой воздушная линия электропередачи, а также представлено несколько простых схем.

Аббревиатура расшифруется как линии электропередач. Эта установка необходима для передачи электрической энергии по кабелям, находящимся на открытой местности (воздухе) и установленными при помощи изоляторов и арматуры к стойкам или опорам. За точку начала и конца линий электропередач принимают линейные входы или линейные выходы РУ, а для ветвления - специальная опора и линейный вход.

Как выглядит станция ЛЭП

Опоры можно разделить на:

  • промежуточные которые находятся на прямых участках трассы установок, их используют только для удержания кабелей;
  • анкерные в основном монтируются на прямых границах ВЛ;
  • концевые стойки - это подвид анкерных, они ставятся в начале и конце ВЛ. При стандартных условиях функционирования установки, они принимают нагрузку от кабелей;
  • специальные стойки используются для изменения положения кабелей на ЛЭП;
  • декорированные стойки, помимо поддержки, они выполняют роль эстетичной красоты.

Линии электропередач можно условно разделить на воздушные и подземные. Последние все больше набирают популярность из-за удобства прокладки, высокой надежности и снижения потерь напряжения.

Обратите внимание! Эти линии различаются методом прокладки, особенностью конструкции. В каждой есть свои плюсы и минусы.

При работе с ЛЭП необходимо соблюдать все правила безопасности, потому что во время монтажа можно получить не только травмы, но и погибнуть.

Типы используемых опор

Технические характеристики линий электропередач

Основные параметры ЛЭП:

  • l - промежутки между стойками или опорами ЛЭП;
  • dd - пространство ме­ж­ду со­сед­ни­ми кабельными линиями;
  • λλ - можно расшифровать как протяженность гир­лян­ды ЛЭП;
  • HH - высота стойки;
  • hh - самое малое разрешенное рас­стоя­ние от низкой отметки кабеля до почвы.

Расшифровывать все характеристики установок сможет не каждый. Поэтому за помощью можно обратиться к профессионалу.

Ниже представлена таблица линий электропередач, обновленная в 2010 году. Более полное описание можно находить на форумах электрики.

Номинальное напряжение, кВ
40 115 220 380 500 700
Промежуток l, м 160-210 170-240 240-360 300-440 330-440 350-550
Пространство d, м 3,0 4,5 7,5 9,0 11,0 18,5
Протяженность гирлянды X, м 0,8-1,0 1,4-1,7 2,3-2,8 3,0-3,4 4,6-5,0 6,8-7,8
Высота стойки Н, м 11-22 14-32 23-42 26-44 28-33 39-42
Параметр линии h, м 6-7 7-8 7-8 8-11 8-14 12-24
Количество кабелей в фазе* 1 1 2 2 3 4-6
Объем сечений
проводов, мм2
60-185 70-240 250-400 250-400 300-500 250-700

Чтобы понизить число ава­рий­ных выключений, которые возникают при плохих погодных условиях, линии электростанций снабжаются грозо­за­щит­ны­ми канатами, которые устанавливаются на стойках вы­ше кабелей и используются для подавления пря­мых по­па­да­ний грозы в ЛЭП. Они похожи на металлические оцин­ко­ван­ные мно­го­про­во­лоч­ные тросы или специальные уси­лен­ные алюминиевые кабели малого се­че­ния.

Производятся и используются такие устройства от молний с встроенными в их труб­ча­тый стержень оп­ти­ко-во­ло­кон­ны­ми жилами, которые дают мно­го­ка­наль­ную связь. На территориях с постоянно по­вто­ряю­щи­ми­ся и силь­ны­ми морозами, лед откладывается на провода и образуются ава­рии из-за пробивания воздушных линий при приближении про­вис­ших канатов и кабелей.

Рабочая температура линий электропередач составляет от 150 до 200 градусов. Внутри провода не имеют изоляцию. Они должны обладать высокой степенью проводимости, а также устойчивостью к механическим повреждениям.

Ниже описано, какие линии электропередач используются для передачи электроэнергии.

Виды

ЛЭП используются для перемещения и распространения электроэнергии. Виды линий можно поделить:

  • по виду расположения кабелей - воздушные (находятся на открытом воздухе) и закрытые (в кабель-каналах);
  • по функциям - сверхдальние, для магистралей, распределительные.

Воздушные ЛЭП также можно разделить на подвиды, который зависят от проводников, типа тока, мощности, применяемого сырья. Ниже подробно описаны эти классификации.

Переменного тока

По типу тока ЛЭП можно подразделить на две группы. Первая из них - это линии электропередач постоянного тока. Такие установки помогают свести к минимуму потери при перемещении энергии, потому используются для передачи тока на дальние расстояния. Этот вид ЛЭП достаточно популярен в европейских государствах, но в России такие линии электропередач можно пересчитать по пальцам. Многие железные дороги работают на переменном токе.

Схема передачи энергии

Постоянного тока

Вторая группа - это линии электропередач постоянного тока, в которых энергия всегда одинакова независимо от направления и сопротивления. Почти все установки в России питаются постоянным током. Их проще произвести и эксплуатировать, но потери при перемещении тока очень часто достигают 10 кВт/км за полгода на ЛЭП с напряжением 450 кВ.

Классификация ЛЭП

Такие установки могут классифицироваться по назначению, напряжению, режиму работы и так далее. Ниже подробно описан каждый этот пункт.

По роду тока

В последние годы передача электроэнергии выполняется в основном на переменном токе. Такой метод популярен, потому что, большее количество источников электроэнергии выдают переменное напряжение (за исключением индивидуальных источников, например солнечные батареи), а главным потребителем выступают установки переменного тока.

Схема монтажа проводов ВЛ

Очень часто передача электроэнергии на постоянном токе более благоприятна. Для понижения потерь в ЛЭП, при передаче электрической энергии на любом виде тока, при помощи трансформаторов (ТТ) поднимают напряжение.

Также при выполнении передачи от установки к потребителю на постоянном токе нужно превращать электрическую энергию из переменного тока в постоянный, для этого существуют специальные выпрямители.

По предназначению

По назначению линии электропередач можно разделить на несколько видов. По расстоянию линии делятся на:

  • сверхдальние. На таких ЛЭП напряжение будет свыше 500 киловольт. Их применяют для перемещения энергии на дальние расстояния. В основном они необходимы для того, чтобы объединять разные энергосистемы или их элементы;
  • магистральные. Такие линии бывают с напряжением 220 или 380 кВ. Они объединяют друг с другом большие энергетические центры или разные установки;
  • распределительные. К этому виду относятся системы с напряжением в 35, 110 и 150 кВ. Применяются для объединения районов и малых питающих центров;
  • подводящие электрическую энергию к людям. Напряжение - не выше 20 кВ, самые популярные виды на 6 и 10 кВ. Эти ЛЭП подводят энергию к распределительным точкам, а потом и к людям в дом.

По напряжению

По базисному напряжению такие ЛЭП в основном разделяют на две главные группы. С низким напряжением до 1 кВ. ГОСТами указываются четыре основных напряжения, 40, 220, 380 и 660 В.

С напряжение выше 1 кВ. ГОСТом здесь описано 12 параметров, средние показатели - от 3 до 35 кВ, высокие - от 100 до 220 кВ, самые высокие - 330, 500 и 700 кВ и ультравысокие - больше 1 МВ. Его также называют высоковольтным напряжением.

По системе функционирования нейтралей в электроустановках

Такие установки можно разделить на четыре сети:

  • трехфазные, в которых не присутствует заземление. В основном эта схема применяется в сетях напряжением до 35 кВ, где перемещаются малые токи;
  • трехфазные, в которых есть заземление с помощью индуктивности. Эту установку также называют резонансно-заземленного вида. В таких воздушных линиях применяется напряжение 3-35 кВ, где перемещаются токи большой величины;
  • трехфазные, в которых присутствует полное заземление. Такой режим функционирования нейтрали применяется в воздушных линиях со средним и высоким напряжениями. Здесь нужно использовать трансформаторы тока;
  • глухозаземленная нейтраль. Здесь работают воздушные линии с напряжением меньше 1,0 кВ или больше 220 кВ.

Процесс монтажа

По режиму работы в зависимости от механического состояния

Также бывает и такое разделения ЛЭП, где предусматривается внешнее состояние всех частей установки. Это линии электропередач в хорошем состоянии, где кабели, стойки и другие элементы почти новые. Основной акцент делается на качество кабелей и канатов, на них не должно быть механических повреждений.

Также бывает аварийное положение, где качество кабелей и канатов достаточно низкое. В таких установках необходимо проводить незамедлительный ремонт.

  • линии электропередач хорошего режима работы - все составляющие новые и не повреждены;
  • аварийные линии - при явных видимых повреждениях проводов;
  • линии монтажного вида - в процессе монтажа стоек, кабелей и канатов.

Определять состояние линий электропередач необходимо только опытному электромонтеру.

Если установка аварийная, то это может привести к ряду последствий. Например, энергия будет подаваться не постоянно, возможно короткое замыкание, оголённые провода при соприкосновении могут вызвать пожар. Если ЛЭП вовремя не подверглась монтажу и случились ненепоправимые последствия, то это может грозить огромными штрафами.

Подземные кабельные линии электропередач

Предназначение ВЛ электропередач

Такими ВЛ называются установки, которые используются для перемещения и рас­пределения электрической энергии по кабелям, находящимся на открытом воздухе и удерживающимися, при помощи специальных стоек. ВЛ устанавливаются и используются в самых различных погодных условиях и гео­графической местности, склонны к атмосферному влиянию (осадки, перепады температур, ветры).

Поэтому воздушные линии необходимо устанавливать с учетом погодных факторов, загрязнения атмосферы, требований прокладки (для города, поля, деревни) и прочее. Установка должна соответствовать ряду правил и нормативам:

  • экономически выгодная стоимость;
  • ­высокой электропроводностью, прочностью используемых канатов и стоек;
  • устойчивость к механическим повреждениям, коррозии;
  • быть безопасной для природы ичеловека, не занимать много свободной территории.

Как выглядят изоляторы

Какое напряжение ЛЭП

По определенных характеристикам, можно узнать напряжение линий электропередач по внешнему виду. Первое на что стоит обратить внимание - это изолятор. Чем больше их находится на установке, тем она будет мощнее.

Самые популярные изоляторы воздушных линий 0,4кВ. Их обычного изготавливают из прочного стекла. По их количеству можно определяться в мощности.

ВЛ-6 и ВЛ-10 по форме такой же, но намного крупнее. Кроме штыревого фиксирования, иногда применяют такие изоляторы по аналогу гирлянд по одному/двум образцам.

Обратите внимание! На воздушной линии 35кВ чаще всего устанавливают навесные изоляторы, хотя иногда можно увидеть штыревого вида. Гирлянда складывается из трех-пяти видов.

Число роликов в гирлянде может быть таким:

  • ВЛ-110кВ - 6 роликов;
  • ВЛ-220кВ - 10 роликов;
  • ВЛ-330кВ - 12 роликов;
  • ВЛ-500кВ - 22 ролика;
  • ВЛ-750кВ - от 20 и выше.

Как узнать мощность ЛЭП

Также напряжение можно узнать по числу кабелей:

  • ВЛ-0,4 кВ число проводов от 2 до 4 и выше;
  • ВЛ-6, 10 кВ - всего три кабеля наустановке;
  • ВЛ-35 кВ, 110 кВ - для каждого изолятора свой провод;
  • ВЛ-220 кВ - для каждого изолятора один большой провод;
  • ВЛ-330 кВ - в фазах по два кабеля;
  • ВЛ-750 кВ - от 3 до 5 проводов.

В заключении необходимо отметить, что в современном мире невозможно обойтись без линий электропередач. Именно они снабжают всю страну электричеством. В настоящее время применяют воздушные и кабельные ЛЭП повсеместно.

Воздушные линии электропередачи.

Электрической воздушной линией ВЛ называется устройство, служащее для передачи электрической энергии по проводам, расположенным на открытом воздухе и прикрепленным при помощи изоляторов и арматуры к опорам. Воздушные линии электропередачи делятся на ВЛ напряжением до 1000 В и выше 1000 В.

При строительстве воздушных линий электропередачи объем земляных работ незначителен. Кроме того, они отличаются простотой эксплуатации и ремонта. Стоимость сооружения воздушной линии примерно на 25-30% меньше, чем стоимость кабельной линии такой же протяженности. Воздушные линии делятся на три класса:

класс I - линии с номинальным эксплуатационным напряжением 35 кВ при потребителях 1 и 2-й категорий и выше 35 кВ независимо от категорий потребителей;

класс II - линии с номинальным эксплуатационным напряжением от 1 до 20 кВ при потребителях 1 и 2-й категорий, а также 35 кВ при потребителях 3-й категории;

класс III - линии с номинальным эксплуатационным напряжением 1 кВ и ниже. Характерной особенностью воздушной линии напряжением до 1000 В является использование опор для одновременного крепления на них проводов радиосети, наружного освещения, телеуправления, сигнализации.

Основными элементами воздушной линии являются опоры, изоляторы и провода.

Для линий напряжением 1 кВ применяют опоры двух видов: деревянные с железобетонными приставками и железобетонные.
Для деревянных опор используют бревна, пропитанные антисептиком, из леса II сорта - сосны, ели, лиственницы, пихты. Не пропитывать бревна можно при изготовлении опор из леса лиственных пород зимней рубки. Диаметр бревен в верхнем отрубе должен составлять не менее 15 см для одностоечных опор и не менее 14 см для двойных и А -образных опор. Допускается принимать диаметр бревен в верхнем отрубе не менее 12 см на ответвлениях, идущих к вводам в здания и сооружения. В зависимости от назначения и конструкции различают опоры промежуточные, угловые, ответвительные, перекрестные и концевые.

Промежуточные опоры на линии являются наиболее многочисленными, так как служат для поддержания проводов на высоте и не рассчитаны на усилия, которые создаются вдоль линии в случае обрыва проводов. Для восприятия этой нагрузки устанавливают анкерные промежуточные опоры, располагая их "ноги" вдоль оси линии. Для восприятия усилий, перпендикулярных линии, устанавливают анкерные промежуточные опоры, располагая "ноги" опоры поперек линии.

Анкерные опоры имеют более сложную конструкцию и повышенную прочность. Они также подразделяются на промежуточные, угловые, ответвительные и концевые, которые повышают общую прочность и устойчивость линии.

Расстояние между двумя анкерными опорами называется анкерным пролетом, а расстояние между промежуточными опорами - шагом опор.
В местах изменения направления трассы воздушной линии устанавливают угловые опоры.

Для электроснабжения потребителей, находящихся на некотором расстоянии от магистральной воздушной линии, используются ответвительные опоры, на которых закрепляются провода, подсоединенные к воздушной линии и к вводу потребителя электроэнергии.
Концевые опоры устанавливают в начале и конце воздушной линии специально для восприятия односторонних осевых усилий.
Конструкции различных опор показаны на рис. 10.
При проектировании воздушной линии количество и тип опор определяют в зависимости от конфигурации трассы, сечения проводов, климатических условий района, степени населенности местности, рельефности трассы и других условий.

Для сооружений ВЛ напряжением выше 1 кВ применяют преимущественно железобетонные и деревянные антисептированные опоры на железобетонных приставках. Конструкции этих опор унифицированы.
Металлические опоры используют главным образом в качестве анкерных опор на воздушных линиях напряжением выше 1 кВ.
На опорах ВЛ расположение проводов может быть любым, только нулевой провод в линиях до 1 кВ размещают ниже фазных. При подвеске на опорах проводов наружного освещения их располагают ниже нулевого провода.
Провода ВЛ напряжением до 1 кВ следует подвешивать на высоте не менее 6 м от земли с учетом стрелы провеса.

Расстояние по вертикали от земли до точки наибольшего провисания провода называется габаритом провода ВЛ над землей.
Провода воздушной линии могут по трассе сближаться с другими линиями, пересекаться с ними и проходить на расстоянии от объектов.
Габаритом сближения проводов ВЛ называется допустимое наименьшее расстояние от проводов линии до объектов (зданий, сооружений), расположенных параллельно трассе ВЛ, а габаритом пересечения - кратчайшее расстояние по вертикали от объекта, расположенного под линией (пересекаемого) до провода ВЛ.

Рис. 10. Конструкции деревянных опор воздушных линий электропередачи:
а - на напряжение ниже 1000 В, б - на напряжение 6 и 10 кВ; 1 - промежуточная, 2 - угловая с подкосом, 3 - угловая с оттяжкой, 4 – анкерная

Изоляторы.

Крепление проводов воздушной линии на опорах осуществляется при помощи изоляторов (рис. 11), насаживаемых на крюки и штыри (рис. 12).
Для воздушных линий напряжением 1000 В и ниже используют изоляторы ТФ-4, ТФ-16, ТФ-20, НС-16, НС-18, АИК-4, а для ответвлений - ШО-12 при сечении проводов до 4 мм 2 ; ТФ-3, АИК-3 и ШО-16 при сечении проводов до 16 мм 2 ; ТФ-2, АИК-2, ШО-70 и ШН-1 при сечении проводов до 50 мм 2 ; ТФ-1 и АИК-1 при сечении проводов до 95 мм 2 .

Для крепления проводов воздушных линий напряжением выше 1000 В применяются изоляторы ШС, ШД, УШЛ, ШФ6-А и ШФ10-А и подвесные изоляторы.

Все изоляторы, кроме подвесных, плотно навертываются на крюки и штыри, на которые предварительно наматывают паклю, пропитанную суриком или олифой, или надевают специальные пластмассовые колпачки.
Для ВЛ напряжением до 1000 В применяются крюки КН-16, а выше 1000 В - крюки КВ-22, изготовленные из круглой стали диаметром соответственно 16 и 22 мм 2 . На траверсах опор тех же воздушных линий напряжением до 1000 В при креплении проводов используются штыри ШТ-Д - для деревянных траверс и ШТ-С - для стальных.

При напряжении воздушных линий более 1000 В на траверсах опор монтируют штыри ЩУ-22 и ШУ-24.

По условиям механической прочности для воздушных линий напряжением до 1000 В используются однопроволочные и много проволочные провода сечением, не менее: алюминиевые - 16 сталеалюминиевые и биметаллические -10, стальные многопроволочные - 25, стальные однопроволочные - 13 мм (диаметр 4 мм).

На воздушной линии напряжением 10 кВ и ниже, проходящей в ненаселенной местности, с расчетной толщиной образующегося на поверхности провода слоя льда (стенка гололеда) до 10 мм, в пролетах без пересечений с сооружениями допускается применение однопроволочных стальных проводов при наличии специального указания.
В пролетах, которые пересекают трубопроводы, не предназначенные для горючих жидкостей и газов, допускается применение стальных проводов сечением 25 мм 2 и более. Для воздушных линий напряжением выше 1000 В применяют только многопроволочные медные провода сечением не менее 10 мм 2 и алюминиевые - сечением не менее 16 мм 2 .

Соединение проводов друг с другом (рис. 62) выполняется скруткой, в соединительном зажиме или в плашечных зажимах.

Крепление проводов ВЛ и изоляторов осуществляется вязальной проволокой одним из способов, показанных на рис.13.
Стальные провода привязывают мягкой стальной оцинкованной проволокой диаметром 1,5 - 2 мм, а алюминиевые и сталеалюминиевые - алюминиевой проволокой диаметром 2,5 - 3,5 мм (можно использовать проволоку многопроволочных проводов).

Алюминиевые и сталеалюминиевые провода в местах крепления предварительно обматывают алюминиевой лентой для предохранения их от повреждений.

На промежуточных опорах провод крепят преимущественно на головке изолятора, а на угловых опорах - на шейке, располагая его с внешней стороны угла, oбpaзуемого проводами линии. Провода на головке изолятора крепят (рис. 13, а) двумя отрезками вязальной проволоки. Проволоку закручивают вокруг головки изолятора так, чтобы концы ее разной длины находились с обеих сторон шейки изолятора, а затем два коротких конца обматывают 4 - 5 раз вокруг провода, а два длинных - переносят через головку изолятора и тоже несколько раз обматывают вокруг провода. При креплении провода на шейке изолятора (рис. 13, б) вязальная проволока охватывает петлей провод и шейку изолятора, затем один конец вязальной проволоки обматывают вокруг провода в одном направлении (сверху вниз), а другой конец - в противоположном направлении (снизу вверх).

На анкерных и концевых опорах провод крепят заглушкой на шейке изолятора. В местах перехода ВЛ через железные дороги и трамвайные пути, а также на пересечениях с другими силовыми линиями и линиями связи применяют двойное крепление проводов.

Все деревянные детали при сборке опор плотно подгоняют друг к другу. Зазор в местах врубок и стыков не должен превышать 4 мм.
Стойки и приставки к опорам воздушных линий выполняют таким образом, чтобы древесина в месте сопряжения не имела сучков и трещин, а стык был совершенно плотным, без просветов. Рабочие поверхности врубок должны быть сплошного пропила (без долбежки древесины).
Отверстия в бревнах просверливают. Запрещается прожигание отверстий нагретыми стержнями.

Бандажи для сопряжения приставок с опорой изготовляют из мягкой стальной проволоки диаметром 4 - 5 мм. Все витки бандажа должны быть равномерно натянуты и плотно прилегать друг к другу. В случае обрыва одного витка весь бандаж следует заменить новым.

При соединении проводов и тросов ВЛ напряжением выше 1000 В в каждом пролете допускается не более одного соединения на каждый провод или трос.

При использовании сварки для соединения проводов не должно быть пережога проволок наружного повива или нарушения сварки при перегибе соединенных проводов.

Металлические опоры, выступающие металлические части железобетонных опор и все металлические детали деревянных и железобетонных опор ВЛ защищают антикоррозионными покрытиями, т.е. красят. Места монтажной сварки металлических опор огрунтовывают и окрашивают на ширину 50 - 100 мм вдоль сварного шва сразу же после сварных работ. Части конструкций, которые подлежат бетонированию, покрываются цементным молоком.



Рис. 14. Способы крепления проводов вязкой к изоляторам:
а - головная вязка, б - боковая вязка

В процессе эксплуатации воздушные линии электропередачи периодически осматривают, а также производят профилактические измерения и проверки. Величину загнивания древесины измеряют на глубине 0,3 - 0,5 м. Опора или приставка считается непригодной для дальнейшей эксплуатации, если глубина загнивания по радиусу бревна составляет более 3 см при диаметре бревна более 25 см.

Внеочередные осмотры ВЛ проводятся после аварий, ураганов, при пожаре вблизи линии, во время ледоходов, гололедов, морозе ниже -40 °С и т. п.

При обнаружении на проводе обрыва нескольких проволок общим сечением до 17% сечения провода место обрыва перекрывают ремонтной муфтой или бандажом. Ремонтную муфту на сталеалюминиевом проводе устанавливают при обрыве до 34% алюминиевых проволок. Если оборвано большее количество жил, провод должен быть разрезан и соединен с помощью соединительного зажима.

Изоляторы могут иметь пробои, ожоги глазури, оплавление металлических частей и даже разрушение фарфора. Это происходит в случае пробоя изоляторов электрической дугой, а также при ухудшении их электрических характеристик в результате старения в процессе эксплуатации. Часто пробои изоляторов происходят из-за сильного загрязнения их поверхности и при напряжениях, превышающих рабочее. Данные о дефектах, обнаруженных при осмотрах изоляторов, заносят в журнал дефектов, и на основе этих данных составляют планы ремонтных работ воздушных линий.

Кабельные линии электропередачи.

Кабельной линией называется линия для передачи электрической энергии или отдельных импульсов, состоящая из одного или нескольких параллельных кабелей с соединительными и концевыми муфтами (заделками) и крепежными деталями.

Над подземными кабельными линиями устанавливают охранные зоны, размер которых зависит от напряжения этой линии. Так, для кабельных линий напряжением до 1000 В охранная зона имеет размер площадки по 1 м с каждой стороны от крайних кабелей. В городах под тротуарами линия должна проходить на расстоянии 0,6 м от зданий и сооружений и 1 м от проезжей части.
Для кабельных линий напряжением выше 1000 В охранная зона имеет размер по 1 м с каждой стороны от крайних кабелей.

Подводные кабельные линии напряжением до 1000 В и выше имеют охранную зону, определяемую параллельными прямыми на расстоянии 100 м от крайних кабелей.

Трассу кабеля выбирают с учетом наименьшего его расхода и обеспечения сохранности от механических повреждений, коррозии, вибрации, перегрева и возможности повреждений соседних кабелей при возникновении короткого замыкания на одном из них.

При прокладке кабелей необходимо соблюдать предельно допустимые радиусы их изгиба, превышение которых приводит к нарушению целостности изоляции жил.

Прокладка кабеля в земле под зданиями, а также через подвальные и складские помещения запрещается.

Расстояние между кабелем и фундаментами зданий должно составлять не менее 0,6 м.

При прокладке кабеля в зоне насаждений расстояние между кабелем и стволами деревьев должно быть не менее 2 м, а в зеленой зоне с кустарниковыми посадками допускается 0,75 м. В случае прокладки кабеля параллельно теплопроводу расстояние в свету от кабеля до стенки канала теплопровода должно быть не менее 2 м, до оси пути железной дороги - не менее 3,25 м, а для электрифицированной дороги - не менее 10,75 м.

При прокладке кабеля параллельно трамвайным путям расстояние между кабелем и осью трамвайного пути должно составлять не менее 2,75 м.
В местах пересечения железных и автомобильных дорог, а также трамвайных путей кабели прокладывают в туннелях, блоках или трубах по всей ширине зоны отчуждения на глубине не менее 1 м от полотна дороги и не менее 0,5 м от дна водоотводных канав, а при отсутствии зоны отчуждения кабели прокладывают непосредственно на участке пересечения или на расстоянии 2 м по обе стороны от полотна дороги.

Кабели укладывают "змейкой" с запасом, равным 1 - 3 % его длины, чтобы исключить возможность возникновения опасных механических напряжений при смещениях почвы и температурных деформациях. Укладывать конец кабеля в виде колец запрещается.

Количество соединительных муфт на кабеле должно быть наименьшим, поэтому кабель прокладывают полными строительными длинами. На 1 км кабельных линий может приходиться не более четырех муфт для трехжильных кабелей напряжением до 10 кВ сечением до 3х95 мм 2 и пяти муфт для сечений от 3х120 до 3x240 мм 2 . Для одножильных кабелей допускается не более двух муфт на 1 км кабельных линий.

Для соединений или оконцеваний кабеля производят разделку концов, т. е. ступенчатое удаление защитных и изоляционных материалов. Размеры разделки определяются конструкцией муфты, которую будут использовать для соединения кабеля, напряжением кабеля и сечением его токопроводящих жил.
Готовая разделка конца трехжильного кабеля с бумажной изоляцией показана на рис. 15.

Соединение концов кабеля напряжением до 1000 В осуществляйся в чугунных (рис. 16) или эпоксидных муфтах, а напряжением 6 и 10 кВ - в эпоксидных (рис. 17) или свинцовых муфтах.


Рис. 16. Соединительная чугунная муфта:
1 - верхняя муфта, 2 - подмотка из смоляной ленты, 3 - фарфоровая распорка, 4 - крышка, 5 - стягивающий болт, 6 -провод заземления, 7 - нижняя полумуфта, 8 - соединительная гильза

Соединение токопроводящих жил кабеля напряжением до 1000 В выполняют опрессовкой в гильзе (рис. 18). Для этого подбирают по сечению соединяемых токопроводящих жил гильзу, пуансон и матрицу, а также механизм для опрессовки (пресс-клещи, гидропресс и др.), зачищают до металлического блеска внутреннюю поверхность гильзы стальным ершом (рис, 18, а), а соединяемые жилы - щеткой - на кардоленты (рис. 18, б). Скругляют многопроволочные секторные жилы кабеля универсальными плоскогубцами. Вводят жилы в гильзу (рис. 18, в) так, чтобы их торцы соприкасались и располагались в середине гильзы.


Рис. 17. Соединительная эпоксидная муфта:
1 - проволочный бандаж, 2 - корпус муфты, 3 - бандаж из суровых ниток, 4 - распорка, 5 - подмотка жилы, 6 - провод заземления, 7 - соединение жил, 8 - герметизирующая подмотка


Рис. 18. Соединение медных жил кабеля опрессовкой:

а - зачистка внутренней поверхности гильзы стальным проволочным ершом, б - зачистка жилы щеткой из кардоленты, в - установка гильзы на соединяемых жилах, г - опрессовка гильзы в прессе, д - готовое соединение; 1 - медная гильза, 2 - ерш, 3 - щетка, 4 - жила, 5 - пресс

Устанавливают гильзу заподлицо в ложе матрицы (рис. 18, г), затем опрессовывают гильзу двумя вдавливаниями, по одному на каждую жилу (рис. 18, д). Вдавливание производят таким образом, чтобы шайба пуансона в конце процесса упиралась в торец (плечики) матрицы. Остаточную толщину кабеля (мм) проверяют с помощью специального штангенциркуля или кронциркуля (величина Н на рис. 19):

4,5 ± 0,2 - при сечении соединяемых жил 16 - 50 мм 2

8,2 ± 0,2 - при сечении соединяемых жил 70 и 95 мм 2

12,5 ± 0,2 - при сечении соединяемых жил 120 и 150 мм 2

14,4 ± 0,2 - при сечении соединяемых жил 185 и 240 мм 2

Качество спрессованных контактов кабеля проверяют внешним осмотром. При этом обращают внимание на лунки вдавливания, которые должны располагаться соосно и симметрично относительно середины гильзы или трубчатой части наконечника. В местах вдавливания пуансона не должно быть надрывов или трещин.

Чтобы обеспечить соответствующее качество опрессовки кабелей, необходимо выполнять следующие условия производства работ:
применять наконечники и гильзы, сечение которых соответствует конструкции жил кабеля, подлежащего оконцеванию или соединению;
использовать матрицы и пуансоны, соответствующие типоразмерам наконечников или гильз, применяемых при опрессовке;
не изменять сечение жилы кабеля для облегчения ввода жилы в наконечник или гильзу путем удаления одной из проволок;

не производить опрессование без предварительной зачистки и смазки кварцево-вазелиновой пастой контактных поверхностей наконечников и гильз на алюминиевых жилах; заканчивать опрессовку не раньше, чем шайба пуансона подойдет вплотную к торцу матрицы.

После соединения жил кабеля снимают металлический поясок между первым и вторым кольцевыми надрезами оболочки и на край находившейся под ней поясной изоляции накладывают бандаж из 5 - 6 витков суровых ниток, после чего устанавливают между жилами распорные пластины так, чтобы жилы кабеля удерживались на определенном расстоянии друг от друга и от корпуса муфты.
Укладывают концы кабеля в муфту, предварительно намотав I на кабель в местах входа и выхода его из муфты 5 - 7 слоев смоляной ленты, а затем скрепляют обе половинки муфты болтами. Заземляющий проводник, припаянный к броне и оболочке кабеля заводят под крепежные болты и таким образом прочно закрепляют его на муфте.

Операции разделки концов кабелей напряжением 6 и 10 кВ в свинцовой муфте мало чем отличаются от аналогичных операций соединения их в чугунной муфте.

Кабельные линии могут обеспечивать надежную и долговечную работу, но только при условии соблюдения технологии монтажных работ и всех требований правил технической эксплуатации.

Качество и надежность смонтированных кабельных муфт и заделок могут быть повышены, если применять при монтаже комплект необходимого инструмента и приспособлений для разделки кабеля и соединения жил, разогрева кабельной массы и т. п. Большое значение для повышения качества выполняемых работ имеет квалификация персонала.

Для кабельных соединений применяются комплекты бумажных роликов, рулонов и бобин хлопчатобумажной пряжи, но не допускается, чтобы они имели складки, надорванные и измятые места, были загрязнены.

Такие комплекты поставляют в банках в зависимости от размера муфт по номерам. Банка на месте монтажа перед употреблением должна быть открыта и разогрета до температуры 70 - 80 °C. Разогретые ролики и рулоны проверяют на отсутствие влаги путем погружения бумажных лент в разогретый до температуры 150 °С парафин. При этом не должно наблюдаться потрескивания и выделения пены. Если влага обнаружится, комплект роликов и рулонов бракуют.
Надежность кабельных линий при эксплуатации поддерживают выполнением комплекса мероприятий, включая контроль за нагревом кабеля, осмотры, ремонты, профилактические испытания.

Для обеспечения длительной работы кабельной линии необходимо следить за температурой жил кабеля, так как перегрев изоляции вызывает ускорение старения и резкое сокращение срока службы кабеля. Максимально допустимая температура токопроводящих жил кабеля определяется конструкцией кабеля. Так, для кабелей напряжением 10 кВ с бумажной изоляцией и вязкой нестекающей пропиткой допускается температура не более 60 °С; для кабелей напряжением 0,66 - 6 кВ с резиновой изоляцией и вязкой нестекающей пропиткой - 65 °С; для кабелей напряжением до 6 кВ с пластмассовой (из полиэтилена, самозатухающего полиэтилена и поливинилхлоридного пластиката) изоляцией - 70 °С; для кабелей напряжением 6 кВ с бумажной изоляцией и обедненной пропиткой - 75 °С; для кабелей напряжением 6 кВ с пластмассовой (из вулканизированного или самозатухающего полиэтилена или бумажной изоляцией и вязкой или обедненной пропиткой - 80 °С.

Длительно допустимые токовые нагрузки на кабели с изоляцией из пропитанной бумаги, резины и пластмассы выбирают по действующим ГОСТам. Кабельные линии напряжением 6 - 10 кВ, несущие нагрузки меньше номинальных, могут быть кратковременно перегруженными на величину, которая зависит от вида прокладки. Так, например, кабель, проложенный в земле и имеющий коэффициент предварительной нагрузки 0,6, может быть перегружен на 35% в течение получаса, на 30% - 1 ч и на 15% - 3 ч, а при коэффициенте предварительной нагрузки 0,8 - на 20% в течение получаса, на 15% - 1 ч и на 10% - 3 ч.

Для кабельных линий, находящихся в эксплуатации более 15 лет, перегрузка снижается на 10%.

Надежность работы кабельной линии в значительной степени зависит от правильной организации эксплуатационного надзора за состоянием линий и их трасс путем периодических осмотров. Плановые осмотры позволяют выявить различные нарушения на кабельных трассах (производство земляных работ, складирование грузов, посадка деревьев и т. д.), а также трещины и сколы на изоляторах концевых муфт, ослабление их креплений, наличие птичьих гнезд и т. д.

Большую опасность для целости кабелей представляют собой раскопки земли, производимые на трассах или вблизи них. Организация, эксплуатирующая подземные кабели, должна выделять наблюдающего при производстве раскопок с целью исключения повреждений кабеля.

Места производства земляных работ по степени опасности повреждения кабелей делятся на две зоны:

I зона - участок земли, расположенный на трассе кабеля или на расстоянии до 1 м от крайнего кабеля напряжением выше 1000 В;

II зона - участок земли, расположенный от крайнего кабеля на расстоянии свыше 1 м.

При работе в I зоне запрещается:

применение экскаваторов и других землеройных машин;
использование ударных механизмов (клин-бабы, шар-бабы и др.) на расстоянии ближе 5 м;

применение механизмов для раскопки грунта (отбойных молотков, электромолотков и др.) на глубину выше 0,4 м при нормальной глубине заложения кабеля (0,7 - 1 м); производство земляных работ в зимнее время без предварительного отогрева грунта;

выполнение работ без надзора представителем эксплуатирующей кабельную линию организации.

Чтобы своевременно выявить дефекты изоляции кабеля, соединительных и концевых муфт и предупредить внезапный выход кабеля из строя или разрушение его токами коротких замыканий, проводят профилактические испытания кабельных линий повышенным напряжением постоянного тока.