Подземная прокладка тепловых сетей и компенсаторов. Способы прокладки трубопроводов тепловых сетей Совместная прокладка водопровода тепловых сетей

  • Дата: 15.03.2020

Производится в непроходных, проходных, и полупроходных каналах, а также в общих коллекторах вместе с иными коммуникациями. На примере Ленинграда в последние годы стала использоваться бесканальная прокладка, которая считается наиболее эффективной. Но и в этом варианте отдельные участки укладываются в каналы - компенсационные ниши, углы поворотов и др.

Если подземная прокладка теплосетей производится на не спланированной территории, осуществляется местная планировка поверхности земли. Это делается в целях отвода поверхностных вод. Элементы тепловых сетей (наружные поверхности перекрытий и стен каналов, камер и т.д.) отделываются обмазочной битумной изоляцией. Если прокладка происходит под зелеными зонами, конструкции покрываются оклеечной гидроизоляцией, которую производят из битумных рулонных материалов. Сети, смонтированные ниже максимального уровня стояния грунтовых вод, оснащаются попутным дренажом. Его диаметр должен составлять более 150 мм.

Установка компенсаторов

Подземная прокладка трубопроводов предполагает установку компенсаторов. Монтаж компенсаторов в проектном положении разрешается после предварительных испытаний тепловых сетей на герметичность и прочность, их обратной засыпки и подземной прокладки камер, каналов и щитовых опор.

Если прокладываемые тепловые сети устанавливаются для обслуживания запорной кирпичной или железобетонной арматуры, устраиваются подземные камеры. Магистральные теплосети проходят через камеры. В них устанавливаются врезки с запорной арматурой для монтажа ответвлений к потребителям. Высота камеры должна отвечать безопасности обслуживания.

В крупных городах подземная прокладка трубопроводов осуществляется совместно с иными инженерными сетями. Городские и внутриквартальные тоннели совмещаются с водопроводами диаметром до 300 мм, силовыми кабелями напряжением до 10 кВ и кабелями связи. Городские тоннели с трубопроводами сжатого воздуха с давлением до 16 МПа совмещаются с напорной канализацией. Внутриквартальные тоннели прокладываются вместе с водяными сетями диаметром до 250 мм и газопроводом природного газа с давлением до 0 005 МПа и диаметром не более 150 мм. В футлярах или тоннелях прокладываются теплосети под городскими проездами, при пересечении крупных автодорог и под площадями с современным покрытием.

Подземная прокладка трубопровода может осуществляться в непроходных каналах.

Бесканальная подземная прокладка осуществляется по территории населенных пунктов. Установка производится в непроходных каналах совместно с иными инженерными сетями в общегородских или внутриквартальных коллекторах. Надземная прокладка трубопровода осуществляется по площадкам предприятий. Теплосети при этом устанавливаются на отдельно стоящих эстакадах и опорах. Иногда допускается и подземная прокладка.

Подробнее о подземной прокладке компенсаторов

При бесканальной прокладке и в непроходных каналах производится подземная установка сильфонных компенсаторов в камерах. Специальные павильоны для не сооружаются при прокладке теплосетей на отдельно стоящих опорах или эстакадах. Устанавливаются они у неподвижных опор. Только один компенсатор монтируется между двумя неподвижными опорами. Направляющие опоры устанавливаются до и после компенсаторов. Одна из направляющих опор должна быть неподвижной.

Из эстетических и архитектурных соображений предусматривается в жилых районах.

При подземной прокладке теплосетей и для воздушной установки применяется кран. Он также используется на мачтах, эстакадах, для возведения служебных помещений высотой в 3 этажа и надземных павильонов насосных станций.

В специальных коллекторах и совместно с другими инженерными сетями осуществляется подземная прокладка трубопровода в пределах населенного пункта (города или поселка). Установка осуществляется в полупроходных, непроходных и проходных каналах непосредственно в грунте.

Все трубопроводы, проложенные под землей должны периодически проверяться. Осуществляется контроль состояния теплоизоляции, строительно-изоляционных конструкций и самих трубопроводов. Профилактические плановые шурфовки производятся в соответствии с графиком, не реже 1 раза в год. Количество шурфов определяется в зависимости от состояния подземных прокладок и протяженности теплосетей.

Укладка труб в траншею осуществляется при участии тех же механизмов, что и при подземной прокладке теплосетей. Это автокраны, трубоукладчики и краны на гусеничном ходу. Если этих механизмов нет или нет возможности их использовать из-за стесненных условий производства, то трубы в траншею могут быть опущены посредством монтажных треног, которые оснащены ручными лебедками или талями. Для труб с малым диаметром используются 2 каната и опускаются они в траншею вручную.

В настоящее время находят применение следующие типы надземных прокладок:

На отдельно стоящих мачтах и опорах (рис. 4.1);

Рис. 4.1. Прокладка трубопроводов на отдельно стоящих мачтах

Рис.4.2-на эстакадах со сплошным пролетным строением в виде ферм или балок (рис. 4.2);

Рис. 4.2. Эстакада с пролетным строением для прокладки трубопроводов

Рис.4.3-на тягах, прикрепленных к верхушкам мачт (вантовая конструкция, рис. 4.3);

Рис. 4.3. Прокладка труб с подвеской на тягах (вантовая конструкция)

На кронштейнах.

Прокладки первого типа наиболее ра­циональны для трубопроводов диаметром 500 мм и более. Трубопроводы большего диаметра при этом могут быть использо­ваны в качестве несущих конструкций для укладки или подвески к ним нескольких тру­бопроводов малого диаметра, требующих более частой установки опор.

Прокладки по эстакаде со сплошным на­стилом для прохода целесообразно приме­нять только при большом количестве труб (не менее 5 - 6 шт.), а также при необходи­мости регулярного надзора за ними. По стоимости конструкции проходная эстакада наиболее дорогая и требует наибольшего расхода металла, так как фермы или ба­лочный настил обычно изготовляются из прокатной стали.

Прокладка третьего типа с подвесной (вантовой) конструкцией пролетного строе­ния является более экономичной, так как позволяет значительно увеличить расстояния между мачтами и тем самым уменьшить расход строительных материалов. Наиболее простые конструктивные формы подвесная прокладка получает при трубопроводах равных или близких диаметров.

При совместной укладке трубопроводов большого и малого диаметра применяется несколько видоизмененная вантовая кон­струкция с прогонами из швеллеров, подве­шенных на тягах. Прогоны позволяют уста­навливать опоры трубопроводов между мач­тами. Однако возможность прокладки тру­бопроводов на эстакадах и с подвеской на тягах в городских условиях ограничена и применима только в промышленных зонах. Наибольшее применение получила проклад­ка водяных трубопроводов на отдельно стоящих мачтах и опорах или на кронштей­нах. Мачты и опоры, как правило, выпол­няются из железобетона. Металлические мачты применяются в исключительных слу­чаях при малом объеме работ и реконструк­ции существующих тепловых сетей.

Мачты по своему назначению делятся на следующие типы:

§ для подвижных опор трубопроводов (так называемые промежуточные);

§ для неподвижных опор трубопроводов (анкерные), а также устанавливаемые в на­чале и в конце участка трассы;

§ устанавливаемые на поворотах трассы;

§ служащие для опирания компенсаторов трубопроводов.

В зависимости от количества, диаметра и назначения прокладываемых трубопрово­дов мачты выполняются трех различных конструктивных форм: одностоечными, двухстоечными и четырехстоечными простран­ственной конструкции.

При проектировании воздушных про­кладок следует стремиться к возможно большему увеличению расстояний между мачтами.

Однако для беспрепятственного стока воды при выключениях трубопроводов мак­симальный прогиб не должен превышать

f = 0,25∙i l ,

где f - прогиб трубопровода в середине пролета, мм; i - уклон оси трубопровода; l - расстояние между опорами, мм.

Сборные железобетонные конструкции мачт обычно собираются из следующих эле­ментов: стоек (колонн), ригелей и фундамен­тов. Размеры сборных деталей определяются количеством и диаметром укладываемых трубопроводов.

При прокладке от одного до трех трубо­проводов в зависимости от диаметра при­меняются одностоечные отдельно стоящие мачты с консолями, они пригодны и при вантовой подвеске труб на тягах; тогда предусматривается устройство верхушки для крепления тяг.

Мачты сплошного прямоугольного се­чения допустимы, если максимальные раз­меры поперечного сечения не превосходят 600 х 400 мм. При больших размерах для облегчения конструкции рекомендуется пре­дусматривать вырезы по нейтральной оси или применять в качестве стоек центрифуги­рованные железобетонные трубы заводского изготовления.

Для многотрубных прокладок мачты промежуточных опор чаще всего проекти­руются двухстоечной конструкции, одно­ярусные или двухъярусные.

Сборные двухстоечные мачты состоят из следующих элементов: двух стоек с одной или двумя консолями, одного или двух риге­лей и двух фундаментов стаканного типа.

Мачты, на которых трубопроводы за­крепляются неподвижно, испытывают на­грузку от горизонтально направленных уси­лий, передаваемых трубопроводами, которые проложены на высоте 5 - 6 м от поверхности грунта. Такие мачты для увеличения устой­чивости проектируются в виде четырехстоечной пространственной конструкции, которая состоит из четырех стоек и четырех или восьми ригелей (при двухъярусном располо­жении трубопроводов). Мачты устанавли­ваются на четырех отдельных фундаментах стаканного типа.

При надземной прокладке трубопрово­дов больших диаметров используется не­сущая способность труб, и поэтому не тре­буется устройства какого-либо пролетного строения между мачтами. Не следует приме­нять и подвеску трубопроводов большого диаметра на тягах, так как такая конструк­ция практически работать не будет.

Рис.4.4В качестве примера приведена про­кладка трубопроводов на железобетонных мачтах (рис. 4.4).

Два трубопровода (прямой и обратный) диаметром 1200 мм уложены на катковых опорах по железобетонным мачтам, устано­вленным через каждые 20 м. Высота мачт от поверхности земли 5,5 - 6м. Сборные желе­зобетонные мачты состоят из двух фунда­ментов, связанных между собой монолит­ным стыком, двух колонн прямоугольного сечения 400 х 600 мм и ригеля.

Рис. 4.4. Прокладка трубопроводов на железобетонных мачтах:

1 - колонна; 2 - ригель; 3 - связь; 4 - фундамент; 5 - соединительный стык; 6 - бетонная подготовка.

Колонны связаны между собой металлическими диаго­нальными связями из угловой стали. Соеди­нение связей с колоннами выполнено косын­ками, приваренными к закладным деталям, которые заделаны в колоннах. Ригель, слу­жащий опорой для трубопроводов, выполнен в виде прямоугольной балки сечением 600 х 370 мм и крепится к колоннам путем сварки закладных стальных листов.

Мачта рассчитана на вес пролета труб, горизонтальные осевые и боковые усилия, возникающие от трения трубопроводов на катковых опорах, а также на ветровую на­грузку.

Рис. 4.5. Неподвижная опора:

1 - колонна; 2 - ригель поперечный; 3 - ригель продольный; 4 - связь поперечная; 5 - связь про­дольная; 6 - фундамент

Неподвижная опора (рис. 4.5), рассчи­танная на горизонтальное усилие от двух труб 300 кН, выполнена из сборных железо­бетонных деталей: четырех колонн, двух продольных ригелей, одного поперечного опорного ригеля и четырех фундаментов, со­единенных попарно.

В продольном и поперечном направле­ниях колонны связаны металлическими диа­гональными связями, выполненными из уголковой стали. На опорах трубопроводы закрепляются хомутами, охватывающими трубы, и косынками в нижней части труб, ко­торые упираются в металлическую раму из швеллеров. Эта рама прикрепляется к железобетонным ригелям приваркой к закладным деталям.

Прокладка трубопроводов на низких опорах нашла широкое применение при строительстве тепловых сетей на неспланированной территории районов новой за­стройки городов. Переход пересеченной или заболоченной местности, а также мелких рек целесообразнее осуществлять таким спосо­бом с использованием несущей способности труб.

Однако при проектировании тепловых сетей с прокладкой трубопроводов на низких опорах необходимо учитывать срок намечен­ного освоения территории, занятой трассой, под городскую застройку. Если через 10 - 15 лет потребуется заключение трубопрово­дов в подземные каналы или реконструкция тепловой сети, то применение воздушной прокладки является нецелесообразным. Для обоснования применения способа прокладки трубопроводов на низких опорах должны быть выполнены технико-экономические рас­четы.

При надземной прокладке трубопрово­дов больших диаметров (800-1400 мм) це­лесообразной является их прокладка на от­дельно стоящих мачтах и опорах с примене­нием специальных сборных железобетонных конструкций заводского изготовления, отве­чающих конкретным гидрогеологическим ус­ловиям трассы тепломагистрали.

Опыт проектирования показывает эко­номичность применения свайных оснований под фундаменты как анкерных, так и проме­жуточных мачт и низких опор.

Надземные тепломагистрали большого диаметра (1200-1400 мм) значительной про­тяженности (5 - 10 км) построены по индиви­дуальным проектам с применением высоких и низких опор на свайном основании.

Имеется опыт строительства тепломагистрали с диаметрами труб D у = 1000 мм от ТЭЦ с применением свай-стоек на заболоченных участках трассы, где на глубине 4-6 м залегают скальные грунты.

Расчет опор на свайном основании на совместное действие вертикальных и гори­зонтальных нагрузок выполняется в соответ­ствии со СНиП II-17-77 «Свайные фун­даменты».

При проектировании низких и высоких опор для прокладки трубопроводов могут быть использованы конструкции унифициро­ванных сборных железобетонных отдельно стоящих опор, разработанных под техноло­гические трубопроводы [ 3 ].

Проект низких опор по типу «качаю­щихся» фундаментов, состоящих из железо­бетонного вертикального щита, устанавли­ваемого на плоскую фундаментную плиту, разработан АтомТЭП. Эти опоры могут применяться в различных грунтовых усло­виях (за исключением сильно обводненных и просадочных грунтов).

Одним из наиболее распространенных видов воздушной прокладки трубопроводов является прокладка последних на кронштей­нах, укрепляемых в стенах зданий. Примене­ние этого способа может быть рекомендова­но при прокладке тепловых сетей на терри­тории промышленных предприятий.

При проектировании трубопроводов, располагаемых по наружной или внутренней поверхности стен, следует выбирать такое размещение труб, чтобы они не закрывали оконных проемов, не мешали размещению других трубопроводов, оборудования и пр. Наиболее важным является обеспечение на­дежного закрепления кронштейнов в стенах существующих зданий. Проектирование про­кладки трубопроводов по стенам существую­щих зданий должно включать обследование стен в натуре и изучение проектов, по ко­торым они построены. При значительных нагрузках, передаваемых трубопроводами на кронштейны, необходимо производить рас­чет общей устойчивости конструкций здания.

Трубопроводы укладываются на крон­штейны с приваренными корпусами скользя­щих опор. Применение катковых подвижных опор при наружной прокладке трубопрово­дов не рекомендуется из-за трудности их пе­риодической смазки и очистки в период эксплуатации (без чего они будут работать как скользящие).

В случае недостаточной надежности стен здания должны быть осуществлены кон­структивные мероприятия по рассредоточе­нию усилий, передаваемых кронштейнами, путем уменьшения пролетов, устройства подкосов, вертикальных стоек и др. Крон­штейны, устанавливаемые в местах устройства неподвижных опор трубопроводов, дол­жны выполняться по расчету на действую­щие на них усилия. Обычно они требуют дополнительного крепления путем устрой­ства подкосов в горизонтальной и верти­кальной плоскостях. На рис. 4.6 приведена типовая конструкция кронштейнов для про­кладки одного или двух трубопроводов диаметром от 50 до 300 мм.

Рис. 4.6. Прокладка трубопроводов на кронштейнах.

Нагретая вода из ТЭЦ или районной котельной насосами подается потребителям по наружным тепловым сетям для централизованного снабжения теплом промышленных предприятий, жилых домов и зданий общественного назначения.

Трассу тепловых сетей в городах и других населенных пунктах прокладывают в отведенных для инженерных сетей технических полосах параллельно красным линиям улиц, дорог и проездов. Трасса тепловых сетей проходит между проезжей частью и полосой зеленых насаждений, Внутри микрорайонов и кварталов трасса тепловых сетей должна также проходить вне проезжей части дорог.

Для тепловых сетей в городах и других населенных пунктах предусматривается подземная прокладка: в непроходных и проходных каналах; в городских и внутри-квартальных коллекторах совместно с другими инженерными сетями и без устройства каналов (тепловые сети диаметром до 500 мм).

На территориях промышленных предприятий тепловые сети прокладывают на отдельно стоящих низких и высоких опорах или эстакадах. Допускается совместная надземная прокладка тепловых сетей с технологическими трубопроводами, независимо от параметров теплоносителя и параметров среды в технологических трубопроводах,


Наиболее часто тепловые сети прокладывают в непроходных каналах из сборного железобетона (), которые бывают одноячейковые, двухъячейковые и многоячейковые.

Рис. 142. Непроходные каналы КЛ: а - одноячейковые, б - двухъячейковые; 1 - лотковый элемент, 2 - песчаная подготовка, 3 - плита перекрытия, 4 - цементная шпонка, 5 - песок

Рис. 143. Прокладка тепловых сетей: а - в непроходном канале с битумоперлитовой изоляцией, б - бесканальная, Ц - циркуляционный трубопровод, Г - трубопровод горячей воды, X - трубопровод холодной воды, Т- обратный трубопровод системы отопления, Гп -ведающий трубопровод системы отопления

На , а показан один из вариантов внутри-квартальной прокладки тепловых сетей в непроходных каналах. В одном канале прокладываются трубопроводы системы отопления, в другом - трубопроводы системы горячего водоснабжения, между каналами непосредственно в грунте проходят трубопроводы холодного водопровода.

При прокладке тепловых сетей в зоне грунтовых вод наружные поверхности стен и перекрытий тепловых каналов следует покрывать битумной изоляцией, а также устраивать дренажи для понижения уровня грунтовых вод по трассе.

Тепловую изоляцию устраивают для трубопроводов тепловых сетей, арматуры, фланцевых соединений, компенсаторов и опор труб независимо от температуры теплоносителя и способов прокладки. Температура на поверхности теплоизоляционной конструкции трубопровода в технических подпольях и подвалах жилых и общественных зданий должна быть не более 45° С, а в тоннелях, коллекторах, камерах и других местах, доступных обслуживанию, не более 60° С.

В настоящее время промышленность выпускает индустриальную битумоперлитовую тепловую изоляцию теплопроводов, которую наносят на трубы методом прессования на заводе. Такую изоляцию изготовляют двух типов: для прокладки теплопроводов и водопроводных сетей бесканальным способом непосредственно в грунте и в непроходных каналах (см. ,а); для прокладки теплопроводов и водопроводных сетей в технических подпольях зданий, проходных каналах, а также внутри помещений.

Битумоперлитовая изоляция представляет собой смесь вспученного перлитового песка, нефтяного битума и пассивирующей добавки, которая надежно защищает трубопроводы от коррозии. Сверху битумоперлитовой изоляции наносят покровный слой из двух слоев стеклоткани, наклеенной на битумной мастике или латексе СКС-65.

Для сварки теплопроводов на трассе концы труб по 200 мм с каждой стороны должны быть не изолированы.


Бесканальная совмещенная прокладка трубопроводов тепловых сетей, горячего и холодного водоснабжения с битумоперлитной изоляцией ( , б) допускается во всех грунтах, кроме просадочных. При бесканальной прокладке трубопроводов в сухих грунтах с коэффициентом фильтрации Кф, равным 5 м/сут и более, дренаж не требуется. Во всех остальных случаях необходимо устраивать попутный дренаж. Бесканальную прокладку трубопроводов тепловых сетей и горячего водоснабжения используют на трассы. В местах поворотов и установки компенсаторов следует предусматривать камеры или каналы.

Глубина заложения трубопроводов с битумоперлитовой изоляцией на участках бесканальной прокладки должна быть не менее 0,8 м от спланированной поверхности земли до верха изоляции из условий прочности и защиты холодного водопровода от промерзания.

Проходной канал для большого числа труб изображен на рис. 144.

Рис. 144. Прокладка тепловых сетей в проходном канале:

1 - подающие трубопроводы, 2 - скользящая опора, 3 - стальная балка, 4 - обратный трубопровод, 5 - изоляция трубопроводов, 6-боковые стенки канала, 7 -лоток для дренажа

Такие каналы имеют большие поперечные сечения, что позволяет обслуживающему персоналу контролировать и ремонтировать трубопроводы. Проходные каналы устраивают главным образом на территориях больших промышленных предприятий и на выводах теплопроводов от мощных ТЭЦ. Стенки 6 проходных каналов делают из железобетона, бетона или кирпича; перекрытие проходных каналов, как правило,- из сборного железобетона.

В проходных каналах необходимо устраивать лоток 7 для стока воды. Уклон дна канала в сторону места отвода воды должен быть не менее 0,002. Опорные конструкции для труб, расположенных в проходных каналах, изготовляют из стальных балок 3, консольно заделанных

прямолинейных участках в стены или укрепленных на стойках. Высота проходного канала должна быть около 2000 мм, ширина канала - не менее 1800 мм.

Трубопроводы в каналах укладывают на подвижные или неподвижные опоры.

Подвижные опоры служат для передачи веса теплопроводов на несущие конструкции. Кроме того, они обеспечивают Перемещение труб, происходящее вследствие изменения их длины при изменениях температуры теплоносителя. Подвижные опоры бывают скользящие и катковые.

Рис. 145. Опоры: в - скользящая, б - катковая, в - неподвижная

Скользящее опоры ( , а) используют в тех случаях, когда основание под опоры может быть сделано достаточно прочным для восприятия больших горизонтальных нагрузок. В противном случае прибегают к Катковым опорам ( , б), создающим меньшие горизонтальные нагрузки. Поэтому при прокладке труб больших диаметров в тоннелях на каркасах или на мачтах следует ставить катковые опоры.

Неподвижные опоры ( ,в) служат для распределения удлинений трубопровода между компенсаторами и для обеспечения равномерной работы последних. В камерах подземных каналов и при надземных прокладках неподвижные опоры выполняют в виде металлических конструкций, сваренных или соединенных на болтах с трубами. Эти конструкции заделывают в фундаменты, стены и перекрытия каналов.

Для восприятия температурных удлинений и разгрузки труб от температурных напряжений на теплосети устанавливают гнутые и сальниковые компенсаторы.

Рис. 146. Гнутые компенсаторы

Гнутые компенсаторы () П- и S-образные изготовляют из труб и отводов (гнутых, крутоизогнутых и сварных) для трубопроводов диаметром от 50 до 1000 мм. Эти компенсаторы устанавливают в непроходных каналах, когда невозможен осмотр проложенных трубопроводов, а также в зданиях при бесканальной прокладке. Допустимый радиус изгиба труб при изготовлении компенсаторов составляет 3,5-4,5 наружного диаметра трубы.

Гнутые П-образные компенсаторы располагают в нишах. Размеры ниши по высоте совпадают с размерами канала, а в плане определяются размерами компенсатора и зазорами, необходимыми для свободного перемещения компенсатора при температурной деформации. Ниши, где установлены компенсаторы, перекрывают железобетонными плитами.

Рис. 147. Сальниковые компенсаторы: а - односторонний, б -двусторонний; 1 - корпус. 2 -стакан, 3- фланцы

Сальниковые компенсаторы изготовляют односторонние ( , а) и двусторонние ( , б) на давление до 1,6 МПа для труб диаметром от 100 до 1000 мм. Сальниковые компенсаторы имеют небольшие размеры, большую компенсирующую способность и оказывают незначительное сопротивление протекающей жидкости.

Сальниковые компенсаторы состоят корпуса 1 с фланцем 3 на уширенной передней части. В корпус компенсатора вставлен подвижный стакан 2 с фланцем для установки компенсатора на трубопроводе. Чтобы сальниковый компенсатор не пропускал теплоноситель между кольцами, в промежутке между корпусом и стаканом укладывают сальниковую набивку. Сальниковую набивку сжимают фланцевым вкладышем с помощью шпилек, ввинчиваемых в корпус компенсатора. Компенсаторы крепят к неподвижным опорам.

Камера для установки задвижек на тепловых сетях изображена на рис. 148.

Рис. 148. Камера для установки задвижек на тепловых сетях:

1 - ответвление подающего магистрального трубопровода, 2 - ответвление об» ратного магистрального трубопровода, 3 - камера, 4- параллельные задвижки, 5 - опоры трубопроводов, 6 - обратный магистральный трубопровод, 7 - подающий магистральный трубопровод

При подземных прокладках теплосетей для обслуживания запорной арматуры устраивают подземные камеры 3 прямоугольной формы. В камерах прокладывают ответвления 1 я 2 сети к потребителям. Горячая вода подается в здание по трубопроводу, укладываемому с правой стороны канала. Подающий 7 и обратный 6 трубопроводы устанавливают на опоры 5 и покрывают изоляцией.

Стены камер выкладывают из кирпича, блоков или панелей, перекрытия - сборные из железобетона в виде ребристых или плоских плит, дно камеры - из бетона. Вход в камеры - через чугунные люки. Для спуска в камеру под люками в стене заделывают скобы. Высота камеры должна быть не менее 1800 мм. Ширину выбирают с таким расчетом, чтобы проходы между стенами и трубами были не менее 500 мм.

Содержание раздела

Тепловые сети по способу прокладки де­лятся на подземные и надземные (воз­душные). Подземная прокладка трубопрово­дов тепловых сетей выполняется: в каналах непроходного и полупроходного поперечно­го сечения, в туннелях (проходных каналах) высотой 2 м и более, в общих коллекторах для совместной прокладки трубопроводов и кабелей различного назначения, во внутриквартальных коллекторах и технических под­польях и коридорах, бесканально.

Надземная прокладка трубопроводов выполняется на отдельно стоящих мачтах или низких опорах, на эстакадах со сплошным пролетным строением, на мачтах с подвеской труб на тягах (вантовая кон­струкция) и на кронштейнах.

К особой группе конструкций относятся специальные сооружения: мостовые пере­ходы, подводные переходы, тоннельные пе­реходы и переходы в футлярах. Эти сооруже­ния, как правило, проектируются и строятся по отдельным проектам с привлечением спе­циализированных организаций.

Выбор способа и конструкций проклад­ки трубопроводов обуславливается многими факторами, основными из которых являют­ся: диаметр трубопроводов, требования экс­плуатационной надежности теплопроводов, экономичность конструкций и способ выпол­нения строительства.

При размещении трассы тепловых сетей в районах существующей или перспективной городской застройки по архитектурным со­ображениям обычно принимается подземная прокладка трубопроводов. В строительстве подземных тепловых сетей наибольшее при­менение получила прокладка трубопроводов в непроходных и полупроходных каналах.

Канальная конструкция имеет ряд по­ложительных свойств, отвечающих специфи­ческим условиям работы горячих трубо­проводов. Каналы являются строительной конструкцией, ограждающей трубопроводы и тепловую изоляцию от непосредственного контакта, с грунтом, оказывающим на них как механические, так и электрохимические воздействия. Конструкция канала полностью разгружает трубопроводы от действия массы грунта и временных транспортных нагрузок, поэтому при их расчете на прочность учиты­ваются только напряжения, возникающие от внутреннего давления теплоносителя, соб­ственного веса и температурных удлинений трубопровода, которые можно определить с достаточной степенью точности.

Прокладка в каналах обеспечивает сво­бодное температурное перемещение трубо­проводов как в продольном (осевом), так и в поперечном направлении, что позволяет использовать их самокомпенсирующую спо­собность на угловых участках трассы тепло­вой сети.

Использование при канальной проклад­ке естественной гибкости трубопроводов для самокомпенсации дает возможность сокра­тить количество или полностью отказаться от установки осевых (сальниковых) компен­саторов, требующих сооружения и обслужи­вания камер, а также гнутых компенсаторов, применение которых нежелательно в город­ских условиях и приводит к увеличению за­трат труб на 8-15%.

Конструкция канальной прокладки яв­ляется универсальной, так как может быть применена при различных гидрогеологиче­ских грунтовых условиях.

При достаточной герметичности строи­тельной конструкции канала и исправно ра­ботающих дренажных устройствах создают­ся условия, препятствующие проникновению в канал поверхностных и грунтовых вод, что обеспечивает неувлажняемость тепловой изоляции и предохраняет от коррозии на­ружную поверхность стальных труб. Трасса тепловых сетей, прокладываемых в каналах (в отличие от бесканальной), может быть выбрана без значительных трудностей по проезжей и непроезжей территории города совместно с другими коммуникациями, в об­ход или с небольшим приближением к суще­ствующим сооружениям, а также с учетом различных планировочных требований (пер­спективные изменения рельефа местности, назначения территории и пр.).

Одним из положительных свойств ка­нальной прокладки является возможность применения в качестве подвесной теплоизо­ляции трубопроводов легких материалов (из­делия из минеральной ваты, стекловолокна и др.) с малым коэффициентом теплопро­водности, что позволяет снизить тепловые потери в сетях.

По эксплуатационным качествам про­кладка тепловых сетей в непроходных и по­лупроходных каналах имеет существенные различия. Непроходные каналы, недоступ­ные для осмотра без вскрытия дорожной одежды, разработки грунта и разборки строительной конструкции, не позволяют об­наружить возникшие повреждения теплоизо­ляции и трубопроводов, а также профилактически их устранить, что приводит к необ­ходимости производства ремонтных работ в момент аварийных повреждений.

Несмотря на недостатки, прокладка в непроходных каналах является распростра­ненным типом подземной прокладки теп­ловых сетей.

В полупроходных каналах, доступных для прохода эксплуатационного персонала (при отключенных теплопроводах), осмотр и обнаружение повреждений теплоизоляции, труб и строительных конструкций, а также их текущий ремонт могут быть в большин­стве случаев выполнены без разрытия и раз­борки канала, что значительно увеличивает надежность и срок службы тепловых сетей. Однако внутренние габариты полупроход­ных каналов превышают габариты непро­ходных каналов, что, естественно, увеличи­вает их строительную стоимость и расход материалов. Поэтому полупроходные ка­налы применяются главным образом при прокладке трубопроводов больших диамет­ров или на отдельных участках тепловых се­тей при прохождении трассы по территории, не допускающей производства разрытий, а также при большой глубине заложения ка­налов, когда засыпка над перекрытием пре­вышает 2,5 м.

Как показывает опыт эксплуатации, тру­бопроводы больших диаметров, проложен­ные в непроходных каналах, недоступных для осмотра и текущего ремонта, наиболее подвержены аварийным повреждениям по причине наружной коррозии. Эти поврежде­ния приводят к длительному прекращению теплоснабжения целых жилых районов и промышленных предприятий, производству аварийно-восстановительных работ, дезорга­низации движения транспорта, нарушению благоустройства, что связано с большими материальными затратами и опасностью для эксплуатационного персонала и населения. Ущерб, наносимый в результате поврежде­ний трубопроводов больших диаметров, не идет ни в какое сравнение с повреждениями трубопроводов средних и малых диаметров.

Учитывая, что удорожание строитель­ства одноячейковых полупроходных каналов по сравнению с каналами непроходными при диаметре тепловых сетей 800 - 1200 мм не­значительно, следует рекомендовать их при­менение во всех случаях и на всем протяже­нии тепломагистралей указанных диаметров. Рекомендуя прокладку трубопроводов боль­ших диаметров в полупроходных каналах, нельзя не отметить их преимущества перед непроходными каналами по степени ремон­топригодности, а именно возможности заме­нять в них изношенные трубопроводы на значительном протяжении без разрытия и разборки строительной конструкции с при­менением закрытого способа производства монтажных работ.

Сущность закрытого способа замены из­ношенных трубопроводов состоит в извлече­нии их из канала путем горизонтального перемещения одновременно с монтажом новых изолированных трубопроводов с по­мощью домкратной установки.

Необходимость в сооружении туннелей (проходных каналов) возникает, как правило, на головных участках магистральных тепло­вых сетей, отходящих от крупных ТЭЦ, когда приходится про­кладывать большое количество трубопрово­дов горячей воды и пара. В таких тепло­фикационных туннелях прокладка кабелей сильных и слабых токов не рекомендуется из-за практической невозможности создания в нем требуемого постоянного температур­ного режима.

Теплофикационные туннели сооружают­ся главным образом на транзитных участках трубопроводов большого диаметра, прокла­дываемых от ТЭЦ, размещенных на пери­ферии города, когда надземная прокладка трубопроводов не может быть допущена по архитектурно-планировочным соображе­ниям.

Туннели должны размещаться в наибо­лее благоприятных гидрогеологических усло­виях, чтобы избежать устройства глубоко расположенного попутного дренажа и дре­нажных насосных станций.

Общие коллекторы, как правило, сле­дует предусматривать в следующих случаях: при необходимости одновременного разме­щения двухтрубных тепловых сетей диамет­ром от 500 до 900 мм, водопровода диа­метром до 500 мм, кабелей связи 10 шт. и более, электрических кабелей напряжением до 10 кВ в количестве 10 шт. и более; при реконструкции городских магистралей с раз­витым подземным хозяйством; при недо­статке свободных мест в поперечном про­филе улиц для размещения сетей в транше­ях; на пересечениях с магистральными ули­цами.

В исключительных случаях по согласо­ванию с заказчиком и эксплуатационными организациями допускается прокладка в кол­лекторе трубопроводов диаметром 1000 мм и водоводов до 900 мм, воздуховодов, холодопроводов, трубопроводов оборотного во­доснабжения и других инженерных сетей. Прокладка газопроводов всех видов в общих городских коллекторах запрещается [ 1 ].

Общие коллекторы следует проклады­вать вдоль городских улиц и дорог прямоли­нейно, параллельно оси проезжей части или красной линии. Целесообразно размещать коллекторы на технических полосах и под полосами зеленых насаждений. Продольный профиль коллектора должен обеспечивать самотечный отвод аварийных и грунтовых вод. Уклон лотка коллектора следует при­нимать не менее 0,005. Глубину коллектора необходимо назначать с учетом глубины за­ложения пересекаемых коммуникаций и дру­гих сооружений, несущей способности кон­струкций и температурного режима внутри коллектора.

Принимая решение о прокладке трубо­проводов в туннеле или коллекторе, следует учитывать возможность обеспечения отвода дренажных и аварийных вод из коллектора в существующие ливневые стоки и есте­ственные водоемы. Размещение коллектора в плане и профиле по отношению к зданиям, сооружениям и параллельно прокладывае­мым коммуникациям должно обеспечивать возможность производства строительных ра­бот без нарушения прочности, устойчивости и рабочего состояния этих сооружений и коммуникаций.

Туннели и коллекторы, размещаемые вдоль городских улиц и дорог, как правило, сооружаются открытым способом с приме­нением типовых сборных железобетонных конструкций, надежность которых должна быть проверена с учетом конкретных мест­ных условий трассы (характеристики гидро­геологических условий, транспортных нагру­зок и пр.).

В зависимости от количества и вида ин­женерных сетей, прокладываемых совместно с трубопроводами, общий коллектор может быть одно- и двухсекционным. Выбор кон­струкции и внутренних габаритов коллек­тора должен производиться также в зависи­мости от наличия прокладываемых комму­никаций.

Проектирование общих коллекторов должно проводиться в соответствии со схе­мой их сооружения на перспективу, состав­ленной с учетом основных положений гене­рального плана развития города на расчет­ный срок. При строительстве новых районов с озелененными улицами и свободной плани­ровкой жилой застройки тепловые сети вме­сте с другими подземными сетями разме­щают вне проезжей части - под технически­ми полосами, полосами зеленых насаждений, а в исключительных случаях - под тротуа­рами. Рекомендуется размещать инженерные подземные сети на незастроенных террито­риях вблизи полосы отвода улиц и дорог.

Прокладка тепловых сетей на террито­рии вновь строящихся районов может быть выполнена в коллекторах, сооружаемых в жилых кварталах и микрорайонах для раз­мещения инженерных коммуникаций, обслу­живающих данную застройку [ 2 ], а также в технических подпольях и технических кори­дорах зданий.

Прокладка распределительных тепловых сетей диаметром до D у 300 мм в техниче­ских коридорах или подвалах зданий высо­той в свету не менее 2 м допускается при условии создания возможности их нормаль­ной эксплуатации (удобство обслуживания и ремонта оборудования). Трубопроводы должны укладываться на бетонные опоры или кронштейны, а компенсация темпера­турных удлинений осуществляться за счет П-образных гнутых компенсаторов и угло­вых участков труб. Технические подполья должны иметь два входа, не сообщающиеся с входами в жилые помещения. Электропро­водка должна выполняться в стальных тру­бах, а конструкция светильников - исклю­чать доступ к лампам без специальных приспособлений. Запрещается в местах про­хождения трубопровода устраивать склад­ские или другие помещения. Прокладку теп­ловых сетей в микрорайонах по трассам, со­впадающим с другими инженерными комму­никациями, следует предусматривать совме­щенную в общих траншеях с размещением трубопроводов в каналах или бесканально.

Способ надземной (воздушной) про­кладки тепловых сетей имеет ограниченное применение в условиях сложившейся и пер­спективной застройки города из-за архитек­турно-планировочных требований, предъяв­ляемых к сооружениям такого вида.

Надземная прокладка трубопроводов широко применяется на территории про­мышленных зон и отдельных предприятий, где они размещаются на эстакадах и мачтах совместно с производственными паропрово­дами и технологическими трубопроводами, а также на кронштейнах, укрепляемых на стенах зданий.

Значительное преимущество имеет над­земный способ прокладки по сравнению с подземным при строительстве тепловых се­тей на территориях с высоким уровнем стоя­ния грунтовых вод, а также при просадочных грунтах и в районах вечной мерзлоты.

Следует принимать во внимание, что конструкция тепловой изоляции и собствен­но трубопроводы при воздушной прокладке не подвергаются разрушающему действию грунтовой влаги, а поэтому существенно по­вышается их долговечность и снижаются тепловые потери. Существенным является также экономичность надземной прокладки тепловых сетей. Даже при благоприятных грунтовых условиях по стоимости капиталь­ных затрат и расходу строительных материа­лов воздушная прокладка трубопроводов средних диаметров экономичнее подземной прокладки в каналах на 20 - 30%, а при больших диаметрах - на 30 - 40%.

В связи с возросшим проектированием и строительством загородных ТЭЦ и атомных станций теплоснабжения (АСТ) для централизованного теплоснабжения крупных городов большое значение приобретают во­просы повышения эксплуатационной надеж­ности и долговечности транзитных тепломагистралей большого диаметра (1000 - 1400 мм) и протяженности при одновремен­ном снижении их металлоемкости и расходо­вании материальных ресурсов. Имеющийся опыт проектирования, строительства и экс­плуатации надземных тепломагистралей большого диаметра (1200-1400 мм) протя­женностью 5-10 км дал положительные ре­зультаты, что указывает на необходимость их дальнейшего сооружения. Особенно целе­сообразна надземная прокладка тепломаги­стралей при неблагоприятных гидрогеологи­ческих условиях, а также на участках трассы, расположенных на незастраиваемой терри­тории, вдоль автомобильных дорог и на пересечении небольших водных преград и оврагов.

При выборе способов и конструкций прокладки тепловых сетей должны учиты­ваться особые условия строительства в райо­нах: с сейсмичностью 8 баллов и более, рас­пространения вечномерзлых и просадочных от замачивания грунтов, а также при нали­чии торфяных и илистых грунтов. Дополни­тельные требования к тепловым сетям в особых условиях строительства изложены в СНиП 2.04.07-86*.